-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsklearn_per_pixel_predict.py
executable file
·57 lines (42 loc) · 1.62 KB
/
sklearn_per_pixel_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python
import argparse
import os
import os.path as path
import csv
import numpy as np
import logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s")
from sklearn import preprocessing
from sklearn.cross_validation import train_test_split
from sklearn import svm, neighbors, tree
from sklearn import metrics
def parse_args():
parser = argparse.ArgumentParser(description="Convert png data to csv")
parser.add_argument("-t", "--train_data",
required=True,
help="CSV of training data")
args = parser.parse_args()
return args
def main():
args = parse_args()
print "Loading data: ", args.train_data
X = None #Data
y = None #Labels
with open(args.train_data) as f:
print "Cols: ", f.readline()
data = np.loadtxt(f, delimiter=",")
X = data[:, 1:]
y = data[:, 0]
print "Splitting data into train, test validation"
train_validation_data, test_data, train_validation_targets, test_targets = train_test_split(X, y, test_size=0.3)
train_data, validation_data, train_targets, validation_targets = train_test_split(train_validation_data, train_validation_targets, test_size=10./70.)
print "Training Classifier"
#classifier = neighbors.KNeighborsClassifier(n_neighbors=3)
classifier = tree.DecisionTreeClassifier()
classifier.fit(train_data, train_targets)
#Evaluation
print "Evaluating Classifier"
test_targets_pred = classifier.predict(test_data)
print metrics.classification_report(test_targets, test_targets_pred)
if __name__ == "__main__":
main()