-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnCostFunction.m
121 lines (96 loc) · 4.28 KB
/
nnCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function [J grad] = nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels, X, y, lambda)
% NNCOSTFUNCTION Implements the neural network cost function for a two layer
% neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
% Variable y in matrics: recode the labels as vectors containing only values 0 or 1,
y_mat = zeros(num_labels, m);
for (i = 1:m)
y_mat(y(i),i) = 1;
end
% Feedforward propagation
X1 = [ones(m,1) X];
h2 = sigmoid(Theta1 * X1'); % Output of hidden layer, a size(Theta1, 1) x m matrix
h2 = [ones(m,1) h2'];
h = sigmoid(Theta2 * h2');
% unregularzied cost function
J = (1/m) * sum(sum((-y_mat) .* log(h)-(1-y_mat) .* log(1-h)));
% Regularization term
term1 = sum(sum(Theta1(:,2:end).^2)); % exclude bias term -> 1st col
term2 = sum(sum(Theta2(:,2:end).^2)); % exclude bias term -> 1st col
Regular = (lambda/(2 * m)) * (term1 + term2);
% regularized logistic regression
J = J + Regular;
% 2.3 Backpropagation
Theta1_d = zeros(hidden_layer_size,1);
Theta2_d = zeros(num_labels,1);
for t = 1:m
% Feedforward propagation
%disp(size(X));
a1 = [1; X(t,:)'];
%disp(size(a1));
z2 = Theta1 * a1;
a2 = sigmoid(z2);
a2 = [1;a2]; % add bias
z3 = Theta2 * a2;
a3 = sigmoid(z3);
% backpropagation
% For each output unit k in layer 3 (the output layer), we set
delta_3 = a3 - y_mat(:,t);
new = Theta2' * delta_3;
delta_2 = new(2:end) .* sigmoidGradient(z2);
Theta1_d = Theta1_d + delta_2 * a1';
Theta2_d = Theta2_d + delta_3 * a2';
end
% Theta1_grad = Theta1_d / m;
% Theta2_grad = Theta2_d / m;
% Regularization gradient function
reg_term1 = (lambda/m) * [zeros(hidden_layer_size,1) Theta1(:,2:end)];
Theta1_grad = (Theta1_d / m) + reg_term1;
reg_term2 = (lambda/m) * [zeros(num_labels,1) Theta2(:,2:end)];
Theta2_grad = (Theta2_d / m) + reg_term2;
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end