-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-weighted-subgraph-with-the-required-paths.py
42 lines (38 loc) · 1.36 KB
/
minimum-weighted-subgraph-with-the-required-paths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Time: O((|E| + |V|) * log|V|) = O(|E| * log|V|),
# if we can further to use Fibonacci heap, it would be O(|E| + |V| * log|V|)
# Space: O(|E| + |V|) = O(|E|)
import heapq
# dijkstra's algorithm
class Solution(object):
def minimumWeight(self, n, edges, src1, src2, dest):
"""
:type n: int
:type edges: List[List[int]]
:type src1: int
:type src2: int
:type dest: int
:rtype: int
"""
def dijkstra(adj, start):
best = [float("inf")]*len(adj)
best[start] = 0
min_heap = [(0, start)]
while min_heap:
curr, u = heapq.heappop(min_heap)
if best[u] < curr:
continue
for v, w in adj[u]:
if best[v] <= curr+w:
continue
best[v] = curr+w
heapq.heappush(min_heap, (curr+w, v))
return best
adj1, adj2 = [[[] for _ in xrange(n)] for _ in xrange(2)]
for u, v, w in edges:
adj1[u].append((v, w))
adj2[v].append((u, w))
dist1 = dijkstra(adj1, src1)
dist2 = dijkstra(adj1, src2)
dist3 = dijkstra(adj2, dest)
result = min(dist1[i]+dist2[i]+dist3[i] for i in xrange(n))
return result if result != float("inf") else -1