-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
minimum-time-to-break-locks-i.py
83 lines (76 loc) · 2.76 KB
/
minimum-time-to-break-locks-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Time: O(n^3)
# Space: O(n^2)
# hungarian algorithm, weighted bipartite matching
class Solution(object):
def findMinimumTime(self, strength, K):
"""
:type strength: List[int]
:type K: int
:rtype: int
"""
# Template translated from:
# https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/WeightedMatching.h
def hungarian(a): # Time: O(n^2 * m), Space: O(n + m)
if not a:
return 0, []
n, m = len(a)+1, len(a[0])+1
u, v, p, ans = [0]*n, [0]*m, [0]*m, [0]*(n-1)
for i in xrange(1, n):
p[0] = i
j0 = 0 # add "dummy" worker 0
dist, pre = [float("inf")]*m, [-1]*m
done = [False]*(m+1)
while True: # dijkstra
done[j0] = True
i0, j1, delta = p[j0], None, float("inf")
for j in xrange(1, m):
if done[j]:
continue
cur = a[i0-1][j-1]-u[i0]-v[j]
if cur < dist[j]:
dist[j], pre[j] = cur, j0
if dist[j] < delta:
delta, j1 = dist[j], j
for j in xrange(m):
if done[j]:
u[p[j]] += delta
v[j] -= delta
else:
dist[j] -= delta
j0 = j1
if not p[j0]:
break
while j0: # update alternating path
j1 = pre[j0]
p[j0], j0 = p[j1], j1
for j in xrange(1, m):
if p[j]:
ans[p[j]-1] = j-1
return -v[0], ans # min cost
def ceil_divide(a, b):
return (a+b-1)//b
adj = [[ceil_divide(strength[i], 1+j*K) for j in xrange(len(strength))] for i in xrange(len(strength))]
return hungarian(adj)[0]
# Time: O(n ^ 2^n)
# Space: O(2^n)
# bitmasks, dp
class Solution2(object):
def findMinimumTime(self, strength, K):
"""
:type strength: List[int]
:type K: int
:rtype: int
"""
def ceil_divide(a, b):
return (a+b-1)//b
def popcount(x):
return bin(x).count('1')
dp = [float('inf')]*(1<<len(strength))
dp[0] = 0
for mask in xrange(1, len(dp)):
x = 1+(popcount(mask)-1)*K
for i in xrange(len(strength)):
if not (mask&(1<<i)):
continue
dp[mask] = min(dp[mask], dp[mask^(1<<i)]+ceil_divide(strength[i], x))
return dp[-1]