-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-score-after-removals-on-a-tree.py
184 lines (171 loc) · 5.76 KB
/
minimum-score-after-removals-on-a-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Time: O(n^2)
# Space: O(n)
# dfs with stack
class Solution(object):
def minimumScore(self, nums, edges):
"""
:type nums: List[int]
:type edges: List[List[int]]
:rtype: int
"""
def is_ancestor(a, b):
return left[a] <= left[b] and right[b] <= right[a]
def iter_dfs():
cnt = 0
left = [0]*len(nums)
right = [0]*len(nums)
stk = [(1, (0, -1))]
while stk:
step, args = stk.pop()
if step == 1:
u, p = args
left[u] = cnt
cnt += 1
stk.append((2, (u, p)))
for v in adj[u]:
if v == p:
continue
stk.append((1, (v, u)))
elif step == 2:
u, p = args
for v in adj[u]:
if v == p:
continue
nums[u] ^= nums[v]
right[u] = cnt
return left, right
adj = [[] for _ in xrange(len(nums))]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
left, right = iter_dfs()
result = float("inf")
for i in xrange(1, len(nums)):
for j in xrange(i+1, len(nums)):
if is_ancestor(i, j):
a, b, c = nums[0]^nums[i], nums[i]^nums[j], nums[j]
elif is_ancestor(j, i):
a, b, c = nums[0]^nums[j], nums[j]^nums[i], nums[i]
else:
a, b, c = nums[0]^nums[i]^nums[j], nums[i], nums[j]
result = min(result, max(a, b, c)-min(a, b, c))
return result
# Time: O(n^2)
# Space: O(n)
# dfs with recursion
class Solution2(object):
def minimumScore(self, nums, edges):
"""
:type nums: List[int]
:type edges: List[List[int]]
:rtype: int
"""
def is_ancestor(a, b):
return left[a] <= left[b] and right[b] <= right[a]
def dfs(u, p):
left[u] = cnt[0]
cnt[0] += 1
for v in adj[u]:
if v == p:
continue
dfs(v, u)
nums[u] ^= nums[v]
right[u] = cnt[0]
adj = [[] for _ in xrange(len(nums))]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
cnt = [0]
left = [0]*len(nums)
right = [0]*len(nums)
dfs(0, -1)
result = float("inf")
for i in xrange(1, len(nums)):
for j in xrange(i+1, len(nums)):
if is_ancestor(i, j):
a, b, c = nums[0]^nums[i], nums[i]^nums[j], nums[j]
elif is_ancestor(j, i):
a, b, c = nums[0]^nums[j], nums[j]^nums[i], nums[i]
else:
a, b, c = nums[0]^nums[i]^nums[j], nums[i], nums[j]
result = min(result, max(a, b, c)-min(a, b, c))
return result
# Time: O(n^2)
# Space: O(n)
# dfs with recursion
class Solution3(object):
def minimumScore(self, nums, edges):
"""
:type nums: List[int]
:type edges: List[List[int]]
:rtype: int
"""
def dfs(u, p, result):
total = nums[u]
for v in adj[u]:
if v == p:
continue
total ^= dfs(v, u, result)
result.append(total)
return total
adj = [[] for _ in xrange(len(nums))]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
total = reduce(lambda x, y: x^y, nums)
result = float("inf")
for u, v in edges:
left = []
dfs(u, v, left)
right = []
dfs(v, u, right)
for candidates in (left, right):
total2 = candidates.pop()
for x in candidates:
a, b, c = total^total2, x, total2^x
result = min(result, max(a, b, c)-min(a, b, c))
return result
# Time: O(n^2)
# Space: O(n)
# dfs with stk (slower, sometimes TLE)
class Solution4(object):
def minimumScore(self, nums, edges):
"""
:type nums: List[int]
:type edges: List[List[int]]
:rtype: int
"""
def iter_dfs(nums, adj, u, p):
result = []
stk = [(1, (u, p, [0]))]
while stk:
step, args = stk.pop()
if step == 1:
u, p, ret = args
new_rets = []
stk.append((2, (u, new_rets, ret)))
for v in adj[u]:
if v == p:
continue
new_rets.append([0])
stk.append((1, (v, u, new_rets[-1])))
elif step == 2:
u, new_rets, ret = args
ret[0] = nums[u]
for x in new_rets:
ret[0] ^= x[0]
result.append(ret[0])
return result
adj = [[] for _ in xrange(len(nums))]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
total = reduce(lambda x, y: x^y, nums)
result = float("inf")
for u, v in edges:
for candidates in (iter_dfs(nums, adj, u, v), iter_dfs(nums, adj, v, u)):
total2 = candidates.pop()
for x in candidates:
a, b, c = total^total2, x, total2^x
result = min(result, max(a, b, c)-min(a, b, c))
return result