-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
maximum-points-after-collecting-coins-from-all-nodes.py
57 lines (52 loc) · 2.03 KB
/
maximum-points-after-collecting-coins-from-all-nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Time: O(nlogr), r = max(coins)
# Space: O(n)
# dfs, bitmasks, pruning
class Solution(object):
def maximumPoints(self, edges, coins, k):
"""
:type edges: List[List[int]]
:type coins: List[int]
:type k: int
:rtype: int
"""
NEG_INF = float("-inf")
def dfs(u, p, base):
if base >= max_base:
return 0
if lookup[u]&base: # we prefer the first way to the second way, so the visited state cannot improve the current chosen ways
return NEG_INF
lookup[u] |= base
return max(((coins[u]//base)-k)+sum(dfs(v, u, base) for v in adj[u] if v != p),
(coins[u]//(base<<1))+sum(dfs(v, u, base<<1) for v in adj[u] if v != p) if (coins[u]//base)-k < coins[u]//(base*2) else NEG_INF) # if (coins[u]//base)-k >= coins[u]//(base*2), the first way is always better
adj = [[] for _ in xrange(len(coins))]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
max_base = 1<<max(coins).bit_length()
lookup = [0]*len(coins)
return dfs(0, -1, 1)
# Time: O(nlogr), r = max(coins)
# Space: O(nlogr)
# tree dp, memoization
class Solution2(object):
def maximumPoints(self, edges, coins, k):
"""
:type edges: List[List[int]]
:type coins: List[int]
:type k: int
:rtype: int
"""
def memoization(u, p, d):
if d >= max_d:
return 0
if lookup[u][d] is None:
lookup[u][d] = max(((coins[u]>>d)-k)+sum(memoization(v, u, d) for v in adj[u] if v != p),
(coins[u]>>(d+1))+sum(memoization(v, u, d+1) for v in adj[u] if v != p))
return lookup[u][d]
adj = [[] for _ in xrange(len(coins))]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
max_d = max(coins).bit_length()
lookup = [[None]*max_d for _ in xrange(len(coins))]
return memoization(0, -1, 0)