-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfind-minimum-diameter-after-merging-two-trees.py
171 lines (152 loc) · 5.28 KB
/
find-minimum-diameter-after-merging-two-trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Time: O(n + m)
# Space: O(n + m)
# iterative dfs, tree diameter
class Solution(object):
def minimumDiameterAfterMerge(self, edges1, edges2):
"""
:type edges1: List[List[int]]
:type edges2: List[List[int]]
:rtype: int
"""
def ceil_divide(a, b):
return (a+b-1)//2
def tree_diameter(edges):
def iter_dfs():
result = 0
stk = [(1, (0, -1, [0]))]
while stk:
step, args = stk.pop()
if step == 1:
u, p, ret = args
for v in reversed(adj[u]):
if v == p:
continue
ret2 = [0]
stk.append((2, (ret2, ret)))
stk.append((1, (v, u, ret2)))
elif step == 2:
ret2, ret = args
result = max(result, ret[0]+(ret2[0]+1))
ret[0] = max(ret[0], ret2[0]+1)
return result
adj = [[] for _ in range(len(edges)+1)]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
return iter_dfs()
d1 = tree_diameter(edges1)
d2 = tree_diameter(edges2)
return max(ceil_divide(d1, 2)+1+ceil_divide(d2, 2), d1, d2)
# Time: O(n + m)
# Space: O(n + m)
# dfs, tree diameter
class Solution2(object):
def minimumDiameterAfterMerge(self, edges1, edges2):
"""
:type edges1: List[List[int]]
:type edges2: List[List[int]]
:rtype: int
"""
def ceil_divide(a, b):
return (a+b-1)//2
def tree_diameter(edges):
def dfs(u, p):
mx = 0
for v in adj[u]:
if v == p:
continue
curr = dfs(v, u)
result[0] = max(result[0], mx+(curr+1))
mx = max(mx, curr+1)
return mx
adj = [[] for _ in range(len(edges)+1)]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
result = [0]
dfs(0, -1)
return result[0]
d1 = tree_diameter(edges1)
d2 = tree_diameter(edges2)
return max(ceil_divide(d1, 2)+1+ceil_divide(d2, 2), d1, d2)
# Time: O(n + m)
# Space: O(n + m)
# bfs, tree dp, tree diameter
class Solution3(object):
def minimumDiameterAfterMerge(self, edges1, edges2):
"""
:type edges1: List[List[int]]
:type edges2: List[List[int]]
:rtype: int
"""
def ceil_divide(a, b):
return (a+b-1)//2
def tree_diameter(edges):
def bfs():
result = 0
dp = [0]*len(adj)
degree = map(len, adj)
q = [u for u in xrange(len(degree)) if degree[u] == 1]
while q:
new_q = []
for u in q:
if degree[u] == 0:
continue
degree[u] -= 1
for v in adj[u]:
if degree[v] == 0:
continue
result = max(result, dp[v]+(dp[u]+1))
dp[v] = max(dp[v], (dp[u]+1))
degree[v] -= 1
if degree[v] == 1:
new_q.append(v)
q = new_q
return result
adj = [[] for _ in range(len(edges)+1)]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
return bfs()
d1 = tree_diameter(edges1)
d2 = tree_diameter(edges2)
return max(ceil_divide(d1, 2)+1+ceil_divide(d2, 2), d1, d2)
# Time: O(n + m)
# Space: O(n + m)
# bfs, tree diameter
class Solution4(object):
def minimumDiameterAfterMerge(self, edges1, edges2):
"""
:type edges1: List[List[int]]
:type edges2: List[List[int]]
:rtype: int
"""
def ceil_divide(a, b):
return (a+b-1)//2
def tree_diameter(edges):
def bfs(root):
d = new_root = -1
lookup = [False]*len(adj)
lookup[root] = True
q = [root]
while q:
d, new_root = d+1, q[0]
new_q = []
for u in q:
for v in adj[u]:
if lookup[v]:
continue
lookup[v] = True
new_q.append(v)
q = new_q
return d, new_root
adj = [[] for _ in range(len(edges)+1)]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
_, root = bfs(0)
d, _ = bfs(root)
return d
d1 = tree_diameter(edges1)
d2 = tree_diameter(edges2)
return max(ceil_divide(d1, 2)+1+ceil_divide(d2, 2), d1, d2)