-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcount-valid-paths-in-a-tree.py
191 lines (173 loc) · 5.58 KB
/
count-valid-paths-in-a-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Time: O(n)
# Space: O(n)
# number theory, tree dp, iterative dfs
class Solution(object):
def countPaths(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: int
"""
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n)
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return spf
def is_prime(u):
return spf[u] == u
def iter_dfs():
result = 0
stk = [(1, (0, -1, [0]*2))]
while stk:
step, args = stk.pop()
if step == 1:
u, p, ret = args
ret[:] = [1-is_prime(u+1), is_prime(u+1)]
stk.append((2, (u, p, ret, 0)))
elif step == 2:
u, p, ret, i = args
if i == len(adj[u]):
continue
v = adj[u][i]
stk.append((2, (u, p, ret, i+1)))
if v == p:
continue
new_ret = [0]*2
stk.append((3, (u, p, new_ret, ret, i)))
stk.append((1, (v, u, new_ret)))
elif step == 3:
u, p, new_ret, ret, i = args
result += ret[0]*new_ret[1]+ret[1]*new_ret[0]
if is_prime(u+1):
ret[1] += new_ret[0]
else:
ret[0] += new_ret[0]
ret[1] += new_ret[1]
return result
spf = linear_sieve_of_eratosthenes(n)
adj = [[] for _ in xrange(n)]
for u, v in edges:
u, v = u-1, v-1
adj[u].append(v)
adj[v].append(u)
return iter_dfs()
# Time: O(n)
# Space: O(n)
# number theory, tree dp, dfs
class Solution2(object):
def countPaths(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: int
"""
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n)
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return spf
def is_prime(u):
return spf[u] == u
def dfs(u, p):
cnt = [1-is_prime(u+1), is_prime(u+1)]
for v in adj[u]:
if v == p:
continue
new_cnt = dfs(v, u)
result[0] += cnt[0]*new_cnt[1]+cnt[1]*new_cnt[0]
if is_prime(u+1):
cnt[1] += new_cnt[0]
else:
cnt[0] += new_cnt[0]
cnt[1] += new_cnt[1]
return cnt
spf = linear_sieve_of_eratosthenes(n)
adj = [[] for _ in xrange(n)]
for u, v in edges:
u, v = u-1, v-1
adj[u].append(v)
adj[v].append(u)
result = [0]
dfs(0, -1)
return result[0]
# Time: O(n)
# Space: O(n)
# number theory, union find
class UnionFind(object): # Time: O(n * alpha(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
self.size = [1]*n
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x, y = self.find_set(x), self.find_set(y)
if x == y:
return False
if self.rank[x] > self.rank[y]: # union by rank
x, y = y, x
self.set[x] = self.set[y]
if self.rank[x] == self.rank[y]:
self.rank[y] += 1
self.size[y] += self.size[x]
return True
def total(self, x):
return self.size[self.find_set(x)]
class Solution3(object):
def countPaths(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: int
"""
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n)
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return spf
def is_prime(u):
return spf[u] == u
spf = linear_sieve_of_eratosthenes(n)
uf = UnionFind(n)
for u, v in edges:
u, v = u-1, v-1
if is_prime(u+1) == is_prime(v+1) == False:
uf.union_set(u, v)
result = 0
cnt = [1]*n
for u, v in edges:
u, v = u-1, v-1
if is_prime(u+1) == is_prime(v+1):
continue
if not is_prime(u+1):
u, v = v, u
result += cnt[u]*uf.total(v)
cnt[u] += uf.total(v)
return result