-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcheck-if-the-rectangle-corner-is-reachable.py
232 lines (210 loc) · 6.8 KB
/
check-if-the-rectangle-corner-is-reachable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Time: O(n^2)
# Space: O(n)
# iterative dfs
class Solution(object):
def canReachCorner(self, X, Y, circles):
"""
:type X: int
:type Y: int
:type circles: List[List[int]]
:rtype: bool
"""
def check(x1, y1, r1, x2, y2, r2):
return (x1-x2)**2+(y1-y2)**2 <= (r1+r2)**2
def iter_dfs():
lookup = [False]*len(circles)
stk = []
dst = [False]*len(circles)
for u in xrange(len(circles)):
x, y, r = circles[u]
if x-r <= 0 or y+r >= Y:
lookup[u] = True
stk.append(u)
if x+r >= X or y-r <= 0:
dst[u] = True
while stk:
u = stk.pop()
if dst[u]:
return True
x1, y1, r1 = circles[u]
for v in xrange(len(circles)):
x2, y2, r2 = circles[v]
if lookup[v] or not check(x1, y1, r1, x2, y2, r2):
continue
lookup[v] = True
stk.append(v)
return False
return not iter_dfs()
# Time: O(n^2)
# Space: O(n)
# bfs
class Solution2(object):
def canReachCorner(self, X, Y, circles):
"""
:type X: int
:type Y: int
:type circles: List[List[int]]
:rtype: bool
"""
def check(x1, y1, r1, x2, y2, r2):
return (x1-x2)**2+(y1-y2)**2 <= (r1+r2)**2
def bfs():
lookup = [False]*len(circles)
q = []
dst = [False]*len(circles)
for u in xrange(len(circles)):
x, y, r = circles[u]
if x-r <= 0 or y+r >= Y:
lookup[u] = True
q.append(u)
if x+r >= X or y-r <= 0:
dst[u] = True
while q:
new_q = []
for u in q:
if dst[u]:
return True
x1, y1, r1 = circles[u]
for v in xrange(len(circles)):
x2, y2, r2 = circles[v]
if lookup[v] or not check(x1, y1, r1, x2, y2, r2):
continue
lookup[v] = True
new_q.append(v)
q = new_q
return False
return not bfs()
# Time: O(n^2)
# Space: O(n^2)
# iterative dfs
class Solution3(object):
def canReachCorner(self, X, Y, circles):
"""
:type X: int
:type Y: int
:type circles: List[List[int]]
:rtype: bool
"""
def check(x1, y1, r1, x2, y2, r2):
return (x1-x2)**2+(y1-y2)**2 <= (r1+r2)**2
def iter_dfs(src, dst):
lookup = [False]*len(adj)
lookup[src] = True
stk = [src]
while stk:
u = stk.pop()
if u == dst:
return True
for v in adj[u]:
if lookup[v]:
continue
lookup[v] = True
stk.append(v)
return False
adj = [[] for _ in xrange(len(circles)+2)]
for u in xrange(len(circles)):
x1, y1, r1 = circles[u]
if x1-r1 <= 0 or y1+r1 >= Y:
adj[u].append(len(circles))
adj[len(circles)].append(u)
if x1+r1 >= X or y1-r1 <= 0:
adj[u].append(len(circles)+1)
adj[len(circles)+1].append(u)
for v in xrange(u):
x2, y2, r2 = circles[v]
if not check(x1, y1, r1, x2, y2, r2):
continue
adj[u].append(v)
adj[v].append(u)
return not iter_dfs(len(circles), len(circles)+1)
# Time: O(n^2)
# Space: O(n^2)
# bfs
class Solution4(object):
def canReachCorner(self, X, Y, circles):
"""
:type X: int
:type Y: int
:type circles: List[List[int]]
:rtype: bool
"""
def check(x1, y1, r1, x2, y2, r2):
return (x1-x2)**2+(y1-y2)**2 <= (r1+r2)**2
def bfs(src, dst):
lookup = [False]*len(adj)
lookup[src] = True
q = [src]
while q:
new_q = []
for u in q:
for v in adj[u]:
if lookup[v]:
continue
lookup[v] = True
new_q.append(v)
q = new_q
return lookup[dst]
adj = [[] for _ in xrange(len(circles)+2)]
for u in xrange(len(circles)):
x1, y1, r1 = circles[u]
if x1-r1 <= 0 or y1+r1 >= Y:
adj[u].append(len(circles))
adj[len(circles)].append(u)
if x1+r1 >= X or y1-r1 <= 0:
adj[u].append(len(circles)+1)
adj[len(circles)+1].append(u)
for v in xrange(u):
x2, y2, r2 = circles[v]
if not check(x1, y1, r1, x2, y2, r2):
continue
adj[u].append(v)
adj[v].append(u)
return not bfs(len(circles), len(circles)+1)
# Time: O(n^2)
# Space: O(n)
# union find
class UnionFind(object): # Time: O(n * alpha(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x, y = self.find_set(x), self.find_set(y)
if x == y:
return False
if self.rank[x] > self.rank[y]: # union by rank
x, y = y, x
self.set[x] = self.set[y]
if self.rank[x] == self.rank[y]:
self.rank[y] += 1
return True
class Solution5(object):
def canReachCorner(self, X, Y, circles):
"""
:type X: int
:type Y: int
:type circles: List[List[int]]
:rtype: bool
"""
def check(x1, y1, r1, x2, y2, r2):
return (x1-x2)**2+(y1-y2)**2 <= (r1+r2)**2
uf = UnionFind(len(circles)+2)
for u in xrange(len(circles)):
x1, y1, r1 = circles[u]
if x1-r1 <= 0 or y1+r1 >= Y:
uf.union_set(u, len(circles))
if x1+r1 >= X or y1-r1 <= 0:
uf.union_set(u, len(circles)+1)
for v in xrange(u):
x2, y2, r2 = circles[v]
if not check(x1, y1, r1, x2, y2, r2):
continue
uf.union_set(u, v)
return uf.find_set(len(circles)) != uf.find_set(len(circles)+1)