-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathselect-cells-in-grid-with-maximum-score.cpp
92 lines (89 loc) · 3.23 KB
/
select-cells-in-grid-with-maximum-score.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Time: O(n^2 * max(n, r)), r = max(x for row in grid for x in row)
// Space: O(n * max(n, r))
// hungarian algorithm, weighted bipartite matching
class Solution {
public:
int maxScore(vector<vector<int>>& grid) {
int mx = 0;
for (const auto& row : grid) {
mx = max(mx, ranges::max(row));
}
vector<vector<int>> adj(size(grid), vector<int>(max(mx, static_cast<int>(size(grid)))));
for (int i = 0; i < size(grid); ++i) {
for (const auto& x : grid[i]) {
adj[i][x - 1] = -x;
}
}
return -hungarian(adj).first;
}
private:
// Template modified from:
// https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/WeightedMatching.h
pair<int, vector<int>> hungarian(const vector<vector<int>> &a) { // Time: O(n^2 * m), Space: O(n + m)
if (a.empty()) return {0, {}};
int n = size(a) + 1, m = size(a[0]) + 1;
vector<int> u(n), v(m), p(m), ans(n - 1);
for (int i = 1; i < n; ++i) {
p[0] = i;
int j0 = 0; // add "dummy" worker 0
vector<int> dist(m, numeric_limits<int>::max()), pre(m, -1);
vector<bool> done(m + 1);
do { // dijkstra
done[j0] = true;
int i0 = p[j0], j1, delta = numeric_limits<int>::max();
for (int j = 1; j < m; ++j) {
if (!done[j]) {
auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
if (dist[j] < delta) delta = dist[j], j1 = j;
}
}
for (int j = 0; j < m; ++j) {
if (done[j]) u[p[j]] += delta, v[j] -= delta;
else dist[j] -= delta;
}
j0 = j1;
} while (p[j0]);
while (j0) { // update alternating path
int j1 = pre[j0];
p[j0] = p[j1], j0 = j1;
}
}
for (int j = 1; j < m; ++j) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost
}
};
// Time: O(r + (n * m) * 2^n), r = max(x for row in grid for x in row)
// Space: O(r + n * m + 2^n)
// dp, bitmasks
class Solution2 {
public:
int maxScore(vector<vector<int>>& grid) {
int mx = 0;
for (const auto& row : grid) {
mx = max(mx, ranges::max(row));
}
vector<unordered_set<int>> lookup(mx);
for (int i = 0; i < size(grid); ++i) {
for (int j = 0; j < size(grid[0]); ++j) {
lookup[grid[i][j] - 1].emplace(i);
}
}
vector<int> dp(1 << size(grid), numeric_limits<int>::min());
dp[0] = 0;
for (int x = 0; x < mx; ++x) {
if (empty(lookup[x])) {
continue;
}
for (int mask = size(dp) - 1; mask >= 0; --mask) {
for (const auto& i : lookup[x]) {
if (mask & (1 << i)) {
continue;
}
dp[mask | (1 << i)] = max(dp[mask | (1 << i)], dp[mask] + (x + 1));
}
}
}
return ranges::max(dp);
}
};