-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
find-the-count-of-monotonic-pairs-ii.cpp
95 lines (88 loc) · 3.33 KB
/
find-the-count-of-monotonic-pairs-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// Time: O(n + r), r = max(nums)
// Space: O(n + r)
// combinatorics, stars and bars
class Solution {
public:
int countOfPairs(vector<int>& nums) {
// arr1 = [0+x1, arr1[0]+max(nums[1]-nums[0], 0)+x2, ..., arr[n-2]+max(nums[n-1]-nums[n-2], 0)+xn]
// => sum(max(nums[i]-nums[i-1], 0) for i in xrange(1, len(nums)))+(x1+x2+...+xn) <= nums[-1]
// => x1+x2+...+xn <= nums[-1]-sum(max(nums[i]-nums[i-1], 0) for i in xrange(1, len(nums))) = cnt <= min(nums)
// => the answer is the number of solutions s.t. x1+x2+...+xn <= cnt, where cnt >= 0
int cnt = nums.back();
for (int i = 1; i < size(nums); ++i) {
cnt -= max(nums[i] - nums[i - 1], 0);
}
return cnt >= 0 ? nHr(size(nums) + 1, cnt) : 0;
}
private:
int nHr(int n, int r) {
return nCr(n + r - 1, r);
}
int nCr(int n, int k) {
while (size(inv_) <= n) { // lazy initialization
fact_.emplace_back(mulmod(fact_.back(), size(inv_)));
inv_.emplace_back(mulmod(inv_[MOD % size(inv_)], MOD - MOD / size(inv_))); // https://cp-algorithms.com/algebra/module-inverse.html
inv_fact_.emplace_back(mulmod(inv_fact_.back(), inv_.back()));
}
return mulmod(mulmod(fact_[n], inv_fact_[n - k]), inv_fact_[k]);
}
uint32_t addmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
if (MOD - a <= b) {
b -= MOD; // relied on unsigned integer overflow in order to give the expected results
}
return a + b;
}
// reference: https://stackoverflow.com/questions/12168348/ways-to-do-modulo-multiplication-with-primitive-types
uint32_t mulmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
uint32_t result = 0;
if (a < b) {
swap(a, b);
}
while (b > 0) {
if (b & 1) {
result = addmod(result, a);
}
a = addmod(a, a);
b >>= 1;
}
return result;
}
static const uint32_t MOD = 1e9 + 7;
vector<int> fact_ = {1, 1};
vector<int> inv_ = {1, 1};
vector<int> inv_fact_ = {1, 1};
};
// Time: O(n * r), r = max(nums)
// Space: O(r)
// dp, prefix sum
class Solution2 {
public:
int countOfPairs(vector<int>& nums) {
static const int MOD = 1e9 + 7;
vector<int> dp(ranges::max(nums) + 1); // dp[j]: numbers of arr1, which is of length i+1 and arr1[i] is j
for (int i = 0; i <= nums[0]; ++i) {
dp[i] = 1;
}
for (int i = 1; i < size(nums); ++i) {
// arr1[i-1] <= arr1[i]
// => arr1[i]-arr1[i-1] >= 0 (1)
//
// arr2[i-1] >= arr2[i]
// => nums[i-1]-arr1[i-1] >= nums[i]-arr1[i]
// => arr1[i]-arr1[i-1] >= nums[i]-nums[i-1] (2)
//
// (1)+(2): arr1[i]-arr1[i-1] >= max(nums[i]-nums[i-1], 0)
vector<int> new_dp(size(dp));
const int diff = max(nums[i] - nums[i - 1], 0);
for (int j = diff; j <= nums[i]; ++j) {
new_dp[j] = ((j - 1 >= 0 ? new_dp[j - 1] : 0) + dp[j - diff]) % MOD;
}
dp = move(new_dp);
}
return accumulate(cbegin(dp), cend(dp), 0, [&](const auto& accu, const auto& x) {
return (accu + x) % MOD;
});
}
};