-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
distinct-prime-factors-of-product-of-array.cpp
49 lines (47 loc) · 1.53 KB
/
distinct-prime-factors-of-product-of-array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// Time: precompute: O(sqrt(MAX_N))
// runtime: O(m + nlog(logn)), m = len(nums), n = max(nums)
// Space: O(sqrt(MAX_N))
// number theory
vector<int> linear_sieve_of_eratosthenes(int n) { // Time: O(n), Space: O(n)
vector<int> spf(n + 1, -1);
vector<int> primes;
for (int i = 2; i <= n; ++i) {
if (spf[i] == -1) {
spf[i] = i;
primes.emplace_back(i);
}
for (const auto& p : primes) {
if (i * p > n || p > spf[i]) {
break;
}
spf[i * p] = p;
}
}
return primes; // len(primes) = O(n/(logn-1)), reference: https://math.stackexchange.com/questions/264544/how-to-find-number-of-prime-numbers-up-to-to-n
}
const int MAX_N = 1000;
const auto& PRIMES = linear_sieve_of_eratosthenes(sqrt(MAX_N));
class Solution {
public:
int distinctPrimeFactors(vector<int>& nums) {
unordered_set<int> result;
for (auto x : unordered_set<int>(cbegin(nums), cend(nums))) { // Time: O(n/p1 + n/p2 + ... + n/pk) = O(n * (1/p1 + 1/p2 + ... + 1/pk)) = O(nlog(logn))
for (const auto& p : PRIMES) {
if (p > x) {
break;
}
if (x % p) {
continue;
}
result.emplace(p);
while (x % p == 0) {
x /= p;
}
}
if (x != 1) { // x is a prime
result.emplace(x);
}
}
return size(result);
}
};