-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
design-graph-with-shortest-path-calculator.cpp
51 lines (45 loc) · 1.56 KB
/
design-graph-with-shortest-path-calculator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// Time: ctor: O(|V| + |E|)
// addEdge: O(1)
// shortestPath: O((|E| + |V|) * log|V|) = O(|E| * log|V|)
// Space: O(|E| + |V|) = O(|E|)
// dijkstra's algorithm
class Graph {
public:
Graph(int n, vector<vector<int>>& edges) : adj_(n) {
for (const auto& edge : edges) {
addEdge(edge);
}
}
void addEdge(vector<int> edge) {
adj_[edge[0]].emplace_back(edge[1], edge[2]);
}
int shortestPath(int node1, int node2) {
const auto& dijkstra = [](const auto& adj, int start, int target) {
static const int INF = numeric_limits<int>::max();
vector<int> best(size(adj), INF);
best[start] = 0;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> min_heap;
min_heap.emplace(0, start);
while (!empty(min_heap)) {
const auto [curr, u] = min_heap.top(); min_heap.pop();
if (curr > best[u]) {
continue;
}
if (u == target) {
break;
}
for (const auto& [v, w] : adj[u]) {
if (!(w < best[v] - curr)) {
continue;
}
best[v] = curr + w;
min_heap.emplace(curr + w, v);
}
}
return best[target] != INF ? best[target] : -1;
};
return dijkstra(adj_, node1, node2);
}
private:
vector<vector<pair<int, int>>> adj_;
};