-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
collecting-chocolates.cpp
101 lines (96 loc) · 3.53 KB
/
collecting-chocolates.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
// Time: O(n)
// Space: O(n)
// mono stack, difference array, prefix sum
class Solution {
public:
long long minCost(vector<int>& nums, int x) {
const int i = distance(cbegin(nums), min_element(cbegin(nums), cend(nums)));
rotate(begin(nums), begin(nums) + i, end(nums));
vector<int> left(size(nums), -1), right(size(nums), size(nums));
vector<int> stk;
for (int i = 0; i < size(nums); ++i) {
while (!empty(stk) && nums[stk.back()] > nums[i]) {
right[stk.back()] = i;
stk.pop_back();
}
if (!empty(stk)) {
left[i] = stk.back();
}
stk.emplace_back(i);
}
vector<int64_t> diff2(size(nums) + 1);
diff2[0] = (+1) * accumulate(cbegin(nums), cend(nums), 0ll); // diff1[k] has sum((+1)*nums[i] for i in xrange(len(nums))) for k >= 0
diff2[1] = x; // diff1[k] has x for k >= 1
diff2.back() += (-1) * nums[0]; // diff1[len(nums)] has 0*nums[0]
for (int i = 1; i < size(nums); ++i) {
const int l = i - left[i], r = right[i] - i;
diff2[min(l, r)] += (-1) * nums[i]; // diff1[k] has 0*nums[i] for min(l, r) <= k < max(l, r)
diff2[max(l, r)] += (-1) * nums[i]; // diff1[k] has (-1)*nums[i] for max(l, r) <= k < l+r
diff2[l + r] += (+1) * nums[i]; // diff1[k] has 0*nums[i] to for k >= l+r
}
vector<int64_t> diff1(size(diff2));
partial_sum(cbegin(diff2), cend(diff2), begin(diff1));
vector<int64_t> result(size(diff1));
partial_sum(cbegin(diff1), cend(diff1), begin(result));
return *min_element(cbegin(result), cend(result));
}
};
// Time: O(nlogn)
// Space: O(n)
// binary search, mono deque
class Solution2 {
public:
long long minCost(vector<int>& nums, int x) {
const auto& cost = [&](int k) {
const int w = k + 1;
int64_t result = static_cast<int64_t>(x) * k;
deque<int> dq;
for (int i = 0; i < size(nums) + w - 1; ++i) {
if (!empty(dq) && i - dq.front() == w) {
dq.pop_front();
}
while (!empty(dq) && nums[dq.back() % size(nums)] >= nums[i % size(nums)]) {
dq.pop_back();
}
dq.emplace_back(i);
if (i >= w - 1) {
result += nums[dq.front() % size(nums)];
}
}
return result;
};
const auto& check = [&](int x) {
return cost(x) <= cost(x + 1);
};
int left = 0, right = size(nums);
while (left <= right) {
const auto& mid = left + (right - left) / 2;
if (check(mid)) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return cost(left);
}
};
// Time: O(n^2)
// Space: O(n)
// brute force
class Solution3 {
public:
long long minCost(vector<int>& nums, int x) {
vector<int64_t> result(size(nums) + 1);
for (int64_t k = 0; k < size(result); ++k) {
result[k] = x * k;
}
for (int i = 0; i < size(nums); ++i) {
int64_t curr = numeric_limits<int64_t>::max();
for (int k = 0; k < size(result); ++k) {
curr = min(curr, static_cast<int64_t>(nums[(i + k) % size(nums)]));
result[k] += curr;
}
}
return *min_element(cbegin(result), cend(result));
}
};