-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpass_key.py
136 lines (117 loc) · 5.47 KB
/
pass_key.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import math
import torch
import argparse
import random
import numpy as np
from numpy import random
from tqdm import tqdm
import transformers
import pandas as pd
from modeling.mamba_lm import MambaLMHeadModel
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--base_model', type=str, default="PY007/LongMamba_16384_bs128_step400")
parser.add_argument('--cache_dir', type=str, default="./cache")
parser.add_argument('--max_tokens', type=int, default=32768, help='maximum token length for evaluation')
parser.add_argument('--interval', type=int, default=2000, help='interval for evaluation')
parser.add_argument('--num_tests', type=int, default=5, help='number of repeat testing for each length')
args = parser.parse_args()
return args
def generate_prompt_landmark(n_garbage, seed, n_garbage_prefix):
"""Generates a text file and inserts an passkey at a random position."""
rnd_state = random.get_state()
random.seed(seed)
n_garbage_suffix = n_garbage - n_garbage_prefix
task_description = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there."
garbage = "The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again."
garbage_inf = " ".join([garbage] * 5000)
assert len(garbage_inf) >= n_garbage
garbage_prefix = garbage_inf[:n_garbage_prefix]
garbage_suffix = garbage_inf[:n_garbage_suffix]
pass_key = random.randint(1, 50000)
information_line = f"The pass key is {pass_key}. Remember it. {pass_key} is the pass key."
final_question = "What is the pass key? The pass key is"
lines = [
task_description,
garbage_prefix,
information_line,
garbage_suffix,
final_question,
]
random.set_state(rnd_state)
return "\n".join(lines), str(pass_key)
def passkey_retrieval_test(model, tokenizer, device, n_garbage_prefix, n_garbage=60000, seed=666):
prompt, answer = generate_prompt_landmark(n_garbage, seed, n_garbage_prefix)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(device)
len_token = input_ids.shape[-1]
answer_ids = tokenizer(answer, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_length=answer_ids.shape[-1] + input_ids.shape[-1]
)
model_answer = generation_output[0, -answer_ids.shape[-1]:].cpu()
model_answer = tokenizer.decode(model_answer).strip()
gold_answer = tokenizer.decode(answer_ids[0]).strip()
is_correct = (model_answer == gold_answer)
return is_correct, len_token
def main(args):
device = "cuda:0"
torch.cuda.set_device(device)
print("base model", args.base_model)
# Load model and tokenizer
model = MambaLMHeadModel.from_pretrained(
args.base_model,
dtype=torch.bfloat16,
device=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
"EleutherAI/gpt-neox-20b",
)
total_test_points = args.max_tokens // args.interval
all_accuries = []
for i in range(total_test_points):
# This is a rough ratio to control the number of texts and tokens
n_garbage = int(3.75 * (i + 1) * args.interval // 1024 * 1024)
# 10 diffierent n_garbage_prefix for each n_garbage that uniformly distributed
avg_tokens = None
for n_garbage_prefix in range(0, n_garbage, n_garbage // 10):
passed_tests = 0
total_tokens = 0
for k in range(args.num_tests):
is_correct, len_tokens = passkey_retrieval_test(model, tokenizer, device, n_garbage_prefix, n_garbage=n_garbage, seed=k)
passed_tests += is_correct
total_tokens += len_tokens
avg_tokens = total_tokens//args.num_tests if avg_tokens is None else avg_tokens
accuracy = float(passed_tests)/args.num_tests
depth = n_garbage_prefix/n_garbage
print("accuracy on the token length %d, depth %f, is %f"%(avg_tokens,depth, accuracy))
result = {"Context Length": avg_tokens, "Document Depth": round(depth*100, -1),"Score": passed_tests}
all_accuries.append(result)
df = pd.DataFrame(all_accuries)
cmap = LinearSegmentedColormap.from_list("custom_cmap", ["#F0496E", "#EBB839", "#0CD79F"])
pivot_table = pd.pivot_table(df, values='Score', index=['Document Depth', 'Context Length'], aggfunc='mean').reset_index() # This will aggregate
pivot_table = pivot_table.pivot(index="Document Depth", columns="Context Length", values="Score")
# Create the heatmap with better aesthetics
plt.figure(figsize=(17.5, 8)) # Can adjust these dimensions as needed
sns.heatmap(
pivot_table,
# annot=True,
fmt="g",
cmap=cmap,
cbar_kws={'label': 'Score'}
)
# More aesthetics
plt.xlabel('Token Limit') # X-axis label
plt.ylabel('Depth Percent') # Y-axis label
plt.xticks(rotation=45) # Rotates the x-axis labels to prevent overlap
plt.yticks(rotation=0) # Ensures the y-axis labels are horizontal
plt.tight_layout() # Fits everything neatly into the figure area
# save
plt.savefig(f"data/heatmap_{args.max_tokens}.png".format(args.max_tokens))
if __name__ == "__main__":
args = parse_config()
main(args)