-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
180 lines (157 loc) · 4.72 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
from enum import Enum
from copy import deepcopy
class Dataset(str, Enum):
PROTEINS = "PROTEINS"
ENZYMES = "ENZYMES"
class Embedder(str, Enum):
QFE_EXP = "QFE-exp"
QFE_PROBS = "QFE-probs"
MLP_2_D = "MLP-2^D"
MLP_D = "MLP-D"
NONE = "none"
class ClassicalModel(str, Enum):
GCN = "GCN"
GraphConv = "GraphConv"
GraphSAGE = "GraphSAGE"
GAT = "GAT"
class Pooling(str, Enum):
SUM = "sum"
MEAN = "mean"
MAX = "max"
class EnumAction(argparse.Action):
def __init__(self, enum_type, **kwargs):
self._enum_type = enum_type
kwargs["choices"] = [e.value for e in enum_type] # List of enum values
super().__init__(**kwargs)
def __call__(self, parser, namespace, values, option_string=None):
enum_value = self._enum_type(values)
setattr(namespace, self.dest, enum_value)
def get_parser():
parser = argparse.ArgumentParser(description="Graph Classification")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--device", type=str, default="cuda:0", help="Device")
parser.add_argument(
"-d",
"--dataset",
action=EnumAction,
enum_type=Dataset,
required=True,
help="Choose a dataset from: %(choices)s",
)
parser.add_argument(
"--k-folds",
type=int,
default=5,
help="Number of folds for stratified k-fold cross-validation",
)
parser.add_argument(
"--embedder",
action=EnumAction,
enum_type=Embedder,
required=True,
help="Choose a dataset from: %(choices)s",
)
parser.add_argument(
"--qfe-layers",
type=int,
default=2,
help="Number of layers to use in the QFE circuit",
)
parser.add_argument(
"--model",
action=EnumAction,
enum_type=ClassicalModel,
required=True,
help="Choose a dataset from: %(choices)s",
)
parser.add_argument("--layers", type=int, default=8, help="Number of layers")
parser.add_argument("--hidden", type=int, default=64, help="Number of hidden units")
parser.add_argument("--dropout", type=float, default=0.1, help="Dropout rate")
parser.add_argument(
"--pooling",
action=EnumAction,
enum_type=Pooling,
required=True,
help="Choose a dataset from: %(choices)s",
)
parser.add_argument("--epochs", type=int, default=200, help="Number of epochs")
parser.add_argument("--patience", type=int, default=30, help="Patience")
parser.add_argument("--batch-size", type=int, default=2048, help="Batch size")
parser.add_argument("--lr", type=float, default=0.001, help="Learning rate")
parser.add_argument("--weight-decay", type=float, default=5e-4, help="Weight decay")
parser.add_argument("--exp-key", type=str, help="Output directory")
parser.add_argument("--start-from", type=str, help="Start from a checkpoint")
parser.add_argument("--comet-ml", action="store_true", help="Log to CometML")
parser.add_argument("--offline", action="store_true", help="Use CometML offline")
parser.add_argument(
"--model-output-dir", type=str, help="Save the final models at this path"
)
return parser
def get_args():
parser = get_parser()
args = parser.parse_args()
return args
def gen_args(
dataset: Dataset,
embedder: Embedder,
model: ClassicalModel,
pooling: Pooling,
layers: int = 8,
qfe_layers: int = 2,
hidden: int = 64,
dropout: float = 0.1,
lr: float = 0.001,
weight_decay: float = 5e-4,
batch_size: int = 2048,
comet_ml=False,
device="cuda",
seed=42,
k_folds=5,
):
parser = get_parser()
cli_args = [
"--dataset",
dataset.value,
"--embedder",
embedder.value,
"--model",
model.value,
"--pooling",
pooling.value,
"--layers",
str(layers),
"--hidden",
str(hidden),
"--dropout",
str(dropout),
"--lr",
str(lr),
"--weight-decay",
str(weight_decay),
"--batch-size",
str(batch_size),
"--qfe-layers",
str(qfe_layers),
"--device",
device,
"--seed",
str(seed),
"--k-folds",
str(k_folds),
]
if comet_ml:
cli_args.append("--comet-ml")
args = parser.parse_args(cli_args)
return args
def get_hparams_from_args(args):
d = deepcopy(vars(args))
for key, value in d.items():
if isinstance(value, Enum):
d[key] = value.value
return d
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
print(args)
print(get_hparams_from_args(args))