-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
606 lines (495 loc) · 25.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import argparse
import json
import logging
import random
from collections import OrderedDict, defaultdict
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from tqdm import trange
from models import CNNHyper, CNNTarget, MLPEmbed, EmbedHyper, MLP, CNNEmbed
from node import BaseNodes
from utils import get_device, set_logger, set_seed, str2bool
def eval_model(nodes, train_idxs, test_idxs, joint, net, criteria, device, m, s, split, embed_split,
mask_absent_classes=False):
num_nodes = len(train_idxs) + len(test_idxs)
curr_results, embeddings = evaluate(nodes, num_nodes, joint, net, criteria, device, m, s, split=split, embed_split=embed_split,
mask_absent_classes=mask_absent_classes)
results = dict()
l1, l2 = [train_idxs], ['train_nodes']
if test_idxs:
l1.append(test_idxs)
l2.append('test_nodes')
for idxs, key in zip(l1, l2):
total_correct = sum([curr_results[i]['correct'] for i in idxs])
total_samples = sum([curr_results[i]['total'] for i in idxs])
avg_loss = np.mean([curr_results[i]['loss'] for i in idxs])
avg_acc = total_correct / total_samples
all_acc = [curr_results[i]['correct'] / curr_results[i]['total'] for i in idxs]
# embeddings = [curr_results[i]['embedding'] for i in idxs]
results[key] = dict(zip(["avg_loss", "avg_acc", "all_acc"], [avg_loss, avg_acc, all_acc]))
return results, embeddings
@torch.no_grad()
def evaluate(nodes: BaseNodes, num_nodes, joint, net, criteria, device, m, s, split='test', embed_split='train',
mask_absent_classes=False):
joint.eval()
results = defaultdict(lambda: defaultdict(list))
embeddings = []
for node_id in range(num_nodes): # iterating over nodes
running_loss, running_correct, running_samples = 0., 0., 0.
if split == 'test':
curr_data = nodes.test_loaders[node_id]
elif split == 'val':
curr_data = nodes.val_loaders[node_id]
else:
curr_data = nodes.train_loaders[node_id]
if embed_split == 'train':
dl = nodes.train_loaders[node_id]
else:
dl = curr_data
num_batches = len(dl)
embedding = 0.
l = 0
classes_present = 0.
for i, B in enumerate(dl):
l += len(B)
B = tuple(t.to(device) for t in B)
_, y = B
classes_present += y.sum(0)
embedding += joint.embednet(B).sum(0)
if i + 1 == num_batches:
break
classes_present = classes_present >= 1
embedding = embedding / l
embedding = (embedding - m) / s
embeddings.append(embedding.cpu().detach().numpy())
weights = joint.hypernet(embedding)
net.load_state_dict(weights)
for batch_count, batch in enumerate(curr_data):
img, label = tuple(t.to(device) for t in batch)
pred = net(img)
if mask_absent_classes:
pred = pred * classes_present
running_loss += criteria(pred, label).item()
running_correct += pred.argmax(1).eq(label.argmax(1)).sum().item()
running_samples += len(label)
results[node_id]['loss'] = running_loss / (batch_count + 1)
results[node_id]['correct'] = running_correct
results[node_id]['total'] = running_samples
embeddings = np.array(embeddings)
return results, embeddings
def finetune(net, optim, dls, epochs, criteria, device):
train_dl, val_dl, test_dl = dls
val_losses, val_accuracies = [], []
test_losses, test_accuracies = [], []
for epoch in range(epochs + 1):
if epoch > 0:
net.train()
for batch in train_dl:
img, label = tuple(t.to(device) for t in batch)
pred = net(img)
loss = criteria(pred, label)
optim.zero_grad()
loss.backward()
optim.step()
running_loss, running_correct, running_samples = 0., 0., 0.
with torch.no_grad():
net.eval()
for batch_count, batch in enumerate(val_dl):
img, label = tuple(t.to(device) for t in batch)
pred = net(img)
running_loss += criteria(pred, label).item()
running_correct += pred.argmax(1).eq(label.argmax(1)).sum().item()
running_samples += len(label)
val_losses.append(running_loss / (batch_count + 1))
val_accuracies.append(running_correct / running_samples)
running_loss, running_correct, running_samples = 0., 0., 0.
with torch.no_grad():
net.eval()
for batch_count, batch in enumerate(test_dl):
img, label = tuple(t.to(device) for t in batch)
pred = net(img)
running_loss += criteria(pred, label).item()
running_correct += pred.argmax(1).eq(label.argmax(1)).sum().item()
running_samples += len(label)
test_losses.append(running_loss / (batch_count + 1))
test_accuracies.append(running_correct / running_samples)
return test_losses, test_accuracies, val_losses, val_accuracies
def train(data_name: str, data_path: str, classes_per_node: int, num_nodes: int, num_train_nodes: int,
clients_per_step: int, partition_type: str, alpha_train: float, alpha_test: float,
steps: int, inner_steps: int, optim: str, lr: float, inner_lr: float,
embed_lr: float, wd: float, inner_wd: float, embed_dim: int, embed_hid: int, embed_nlayers: int,
embed_batches: int, embed_split: str, embed_y: bool, embed_model: str, hyper_hid: int, hyper_nhid: int,
n_kernels: int, bs: int, device, eval_every: int, save_path: Path, mask_absent: bool, seed: int) -> None:
###############################
# init nodes, hnet, local net #
###############################
alpha_test_range = None
all_embeddings = []
embedding_dir_path = None
# Infer on range of OOD test clients
if alpha_test == -1:
assert partition_type == 'dirichlet'
alpha_test_range = np.arange(1, 11) * 0.1
alpha_test = alpha_train
if data_name == 'femnist':
num_nodes = 3597
num_train_nodes = int(0.9 * num_nodes)
nodes = BaseNodes(data_name, data_path, num_nodes, num_train_nodes, partition_type=partition_type,
classes_per_node=classes_per_node, batch_size=bs, alpha_train=alpha_train, alpha_test=alpha_test,
embedding_dir_path=embedding_dir_path)
train_idxs = list(range(num_train_nodes))
test_idxs = list(range(num_train_nodes, num_nodes))
embed_dim = embed_dim
if embed_dim == -1:
logging.info("auto embedding size")
embed_dim = int(1 + num_nodes / 4)
if data_name == "cifar10":
embed_x = True
dim_x = 32 * 32 * 3
dim_y = 10
if embed_model == 'mlp':
enet = MLPEmbed(10, embed_dim)
elif embed_model == 'cnn':
enet = CNNEmbed(embed_y, 10, embed_dim, device)
else:
raise ValueError('Choose model from mlp or cnn.')
hnet = CNNHyper(num_nodes, embed_dim, hidden_dim=hyper_hid, n_hidden=hyper_nhid, n_kernels=n_kernels)
joint = EmbedHyper(enet, hnet)
net = CNNTarget(n_kernels=n_kernels)
elif data_name == "cifar100":
if embed_model == 'mlp':
enet = MLPEmbed(100, embed_dim)
elif embed_model == 'cnn':
enet = CNNEmbed(embed_y, 100, embed_dim, device)
else:
raise ValueError('Choose model from mlp or cnn.')
hnet = CNNHyper(num_nodes, embed_dim, hidden_dim=hyper_hid,
n_hidden=hyper_nhid, n_kernels=n_kernels, out_dim=100)
joint = EmbedHyper(enet, hnet)
net = CNNTarget(n_kernels=n_kernels, out_dim=100)
elif data_name == 'femnist':
if embed_model == 'mlp':
enet = MLPEmbed(62, embed_dim)
elif embed_model == 'cnn':
enet = CNNEmbed(embed_y, 62, embed_dim, device, in_channels=1)
else:
raise ValueError('Choose model from mlp or cnn.')
hnet = CNNHyper(num_nodes, embed_dim, in_channels=1, hidden_dim=hyper_hid,
n_hidden=hyper_nhid, n_kernels=n_kernels, out_dim=62)
joint = EmbedHyper(enet, hnet)
net = CNNTarget(in_channels=1, n_kernels=n_kernels, out_dim=62)
else:
raise ValueError("choose data_name from ['cifar10', 'cifar100']")
joint = joint.to(device)
net = net.to(device)
filename = f"{data_name}_{num_nodes}_nodes_{num_train_nodes}_trainnodes_" \
f"_partition_{partition_type}_alphatrain_{alpha_train}_alphatest_{alpha_test}" \
f"_seed_{seed}"
checkpoint_dir = Path(f'saved_models/{filename}')
checkpoint_dir.mkdir(parents=True, exist_ok=True)
##################
# init optimizer #
##################
embed_lr = embed_lr if embed_lr is not None else lr
optimizers = {
'sgd': torch.optim.SGD(
[
{'params': [p for n, p in joint.named_parameters() if 'embed' not in n]},
{'params': [p for n, p in joint.named_parameters() if 'embed' in n], 'lr': embed_lr}
], lr=lr, momentum=0.9, weight_decay=wd
),
'adam': torch.optim.Adam(params=joint.parameters(), lr=lr)
}
optimizer = optimizers[optim]
criteria = torch.nn.CrossEntropyLoss()
################
# init metrics #
################
last_eval = -1
best_step = -1
best_acc = -1
test_best_based_on_step, test_best_min_based_on_step = -1, -1
test_best_max_based_on_step, test_best_std_based_on_step = -1, -1
step_iter = trange(steps)
results = {'train_nodes': defaultdict(list), 'test_nodes': defaultdict(list)}
m, s = None, None
already_embedded = False
for step in step_iter:
if (step == 1) and (embed_batches == -1):
print('Using full client dl to generate embedding')
joint.train()
# select client at random
node_ids = random.sample(train_idxs, clients_per_step)
all_grads = []
for node_id in node_ids:
# produce & load local network weights
dl = nodes.train_loaders[node_id]
num_batches = embed_batches if (embed_batches != -1) else len(dl)
embedding = torch.zeros(embed_dim).to(device)
l = 0
for i, B in enumerate(dl):
l += len(B)
B = tuple(t.to(device) for t in B)
embedding += enet(B).sum(0)
if i + 1 == num_batches:
break
embedding = embedding / l
if m is None:
with torch.no_grad():
m, s = torch.mean(embedding), torch.std(embedding)
embedding = (embedding - m) / s
if step == 0 and not already_embedded and embedding_dir_path is not None:
_, embeddings = eval_model(nodes, train_idxs, test_idxs, joint, net, criteria,
device, m, s, split="test", embed_split=embed_split,
mask_absent_classes=mask_absent)
all_embeddings.append(embeddings)
if embedding_dir_path is not None:
np.save(f'{embedding_dir_path}/user_embeddings.npy', np.array(all_embeddings))
already_embedded = True
weights = hnet(embedding)
net.load_state_dict(weights)
# init inner optimizer
inner_optim = torch.optim.SGD(
net.parameters(), lr=inner_lr, momentum=.9, weight_decay=inner_wd
)
# storing theta_i for later calculating delta theta
inner_state = OrderedDict({k: tensor.data for k, tensor in weights.items()})
# NOTE: evaluation on sent model
with torch.no_grad():
net.eval()
batch = next(iter(nodes.test_loaders[node_id]))
img, label = tuple(t.to(device) for t in batch)
pred = net(img)
prvs_loss = criteria(pred, label)
prvs_acc = pred.argmax(1).eq(label.argmax(1)).sum().item() / len(label)
net.train()
# inner updates -> obtaining theta_tilda
for i in range(inner_steps):
net.train()
inner_optim.zero_grad()
optimizer.zero_grad()
batch = next(iter(nodes.train_loaders[node_id]))
img, label = tuple(t.to(device) for t in batch)
pred = net(img)
loss = criteria(pred, label)
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 50)
inner_optim.step()
optimizer.zero_grad()
final_state = net.state_dict()
# calculating delta theta
delta_theta = OrderedDict({k: inner_state[k] - final_state[k] for k in weights.keys()})
# calculating phi gradient
joint_grads = torch.autograd.grad(
list(weights.values()), joint.parameters(), grad_outputs=list(delta_theta.values()), allow_unused=True
)
all_grads.append(joint_grads)
sum_grads = [0. for _ in range(len(all_grads[0]))]
for g in all_grads:
sum_grads = [s_i + g_i for (s_i, g_i) in zip(sum_grads, g)]
avg_grads = [s_i / clients_per_step for s_i in sum_grads]
# update hnet weights
for p, g in zip(joint.parameters(), avg_grads):
p.grad = g
torch.nn.utils.clip_grad_norm_(joint.parameters(), 50)
optimizer.step()
step_iter.set_description(
f"Step: {step+1}, Node ID: {node_id}, Loss: {prvs_loss:.4f}, Acc: {prvs_acc:.4f}"
)
if step % eval_every == 0:
last_eval = step
step_results, embeddings = eval_model(nodes, train_idxs, test_idxs, joint, net, criteria,
device, m, s, split="test", embed_split=embed_split, mask_absent_classes=mask_absent)
all_embeddings.append(embeddings)
if embedding_dir_path is not None:
np.save(f'{embedding_dir_path}/user_embeddings.npy', np.array(all_embeddings))
avg_acc = step_results['train_nodes']['avg_acc']
avg_loss = step_results['train_nodes']['avg_loss']
all_acc = step_results['train_nodes']['all_acc']
logging.info(f"\nStep: {step+1}, AVG Loss: {avg_loss:.4f}, AVG Acc: {avg_acc:.4f}")
for key, dic in step_results.items():
results[key]['test_avg_loss'].append(dic['avg_loss'])
results[key]['test_avg_acc'].append(dic['avg_acc'])
step_val_results, _ = eval_model(nodes, train_idxs, test_idxs, joint, net, criteria,
device, m, s, split="val", embed_split=embed_split, mask_absent_classes=mask_absent)
val_avg_loss = step_val_results['train_nodes']['avg_loss'],
val_avg_acc = step_val_results['train_nodes']['avg_acc']
if best_acc < val_avg_acc:
best_acc = val_avg_acc
best_step = step
test_best_based_on_step = avg_acc
test_best_min_based_on_step = np.min(all_acc)
test_best_max_based_on_step = np.max(all_acc)
test_best_std_based_on_step = np.std(all_acc)
results['train_nodes']['val_avg_loss'].append(val_avg_loss)
results['train_nodes']['val_avg_acc'].append(val_avg_acc)
results['train_nodes']['best_step'].append(best_step)
results['train_nodes']['best_val_acc'].append(best_acc)
results['train_nodes']['best_test_acc_based_on_val_beststep'].append(test_best_based_on_step)
results['train_nodes']['test_best_min_based_on_step'].append(test_best_min_based_on_step)
results['train_nodes']['test_best_max_based_on_step'].append(test_best_max_based_on_step)
results['train_nodes']['test_best_std_based_on_step'].append(test_best_std_based_on_step)
torch.save({
'step': step,
'enet_state_dict': enet.state_dict(),
'hnet_state_dict': hnet.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, f'{checkpoint_dir}/step_{step}.ckpt')
if step != last_eval:
step_results, embeddings = eval_model(nodes, train_idxs, test_idxs, joint, net, criteria,
device, m, s, split="test", embed_split=embed_split, mask_absent_classes=mask_absent)
all_embeddings.append(embeddings)
if embedding_dir_path is not None:
np.save(f'{embedding_dir_path}/user_embeddings.npy', np.array(all_embeddings))
avg_acc = step_results['train_nodes']['avg_acc']
avg_loss = step_results['train_nodes']['avg_loss']
all_acc = step_results['train_nodes']['all_acc']
logging.info(f"\nStep: {step + 1}, AVG Loss: {avg_loss:.4f}, AVG Acc: {avg_acc:.4f}")
for key, dic in step_results.items():
results[key]['test_avg_loss'].append(dic['avg_loss'])
results[key]['test_avg_acc'].append(dic['avg_acc'])
step_val_results, _ = eval_model(nodes, train_idxs, test_idxs, joint, net, criteria,
device, m, s, split="val", embed_split=embed_split,
mask_absent_classes=mask_absent)
val_avg_loss = step_val_results['train_nodes']['avg_loss'],
val_avg_acc = step_val_results['train_nodes']['avg_acc']
if best_acc < val_avg_acc:
best_acc = val_avg_acc
best_step = step
test_best_based_on_step = avg_acc
test_best_min_based_on_step = np.min(all_acc)
test_best_max_based_on_step = np.max(all_acc)
test_best_std_based_on_step = np.std(all_acc)
results['train_nodes']['val_avg_loss'].append(val_avg_loss)
results['train_nodes']['val_avg_acc'].append(val_avg_acc)
results['train_nodes']['best_step'].append(best_step)
results['train_nodes']['best_val_acc'].append(best_acc)
results['train_nodes']['best_test_acc_based_on_val_beststep'].append(test_best_based_on_step)
results['train_nodes']['test_best_min_based_on_step'].append(test_best_min_based_on_step)
results['train_nodes']['test_best_max_based_on_step'].append(test_best_max_based_on_step)
results['train_nodes']['test_best_std_based_on_step'].append(test_best_std_based_on_step)
torch.save({
'step': step,
'enet_state_dict': enet.state_dict(),
'hnet_state_dict': hnet.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, f'{checkpoint_dir}/step_{step}.ckpt')
best_checkpoint = torch.load(f'{checkpoint_dir}/step_{best_step}.ckpt')
enet.load_state_dict(best_checkpoint['enet_state_dict'])
hnet.load_state_dict(best_checkpoint['hnet_state_dict'])
# Infer on range of alpha clients
if alpha_test_range is not None:
results['ood_results'] = dict()
for alpha_test_new in alpha_test_range:
results['ood_results'][f'{alpha_test_new:.2f}'] = []
print(f'Testing clients for alpha={alpha_test_new}')
nodes = BaseNodes(data_name, data_path, num_nodes, num_train_nodes, partition_type=partition_type,
classes_per_node=classes_per_node, batch_size=bs, alpha_train=alpha_train,
alpha_test=alpha_test_new)
ood_results, _ = eval_model(nodes, train_idxs, test_idxs, joint, net, criteria,
device, m, s, split="test", embed_split=embed_split, mask_absent_classes=mask_absent)
results['ood_results'][f'{alpha_test_new:.2f}'] = ood_results
save_path = Path(save_path)
save_path.mkdir(parents=True, exist_ok=True)
with open(str(save_path / filename) + '.json', "w") as file:
json.dump(results, file, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="PeFLL Training Experiment Arguments"
)
#############################
# Dataset Args #
#############################
parser.add_argument(
"--data-name", type=str, default="cifar10", choices=['cifar10', 'cifar100', 'femnist']
)
parser.add_argument("--data-path", type=str, default="data", help="dir path for datasets")
parser.add_argument("--num-nodes", type=int, default=100, help="number of simulated nodes")
parser.add_argument("--num-train-nodes", type=int, default=90, help="number of nodes used in training")
parser.add_argument("--clients-per-step", type=int, default=5, help="nodes to sample per round")
parser.add_argument("--partition-type", type=str, default='by_class', help="[by_class, dirichlet]")
parser.add_argument("--alpha-train", type=float, default=0.1, help="alpha for train clients")
parser.add_argument("--alpha-test", type=float, default=0.1, help="alpha for test clients")
##################################
# Optimization args #
##################################
parser.add_argument("--num-steps", type=int, default=5000)
parser.add_argument("--optim", type=str, default='adam', choices=['adam', 'sgd'], help="learning rate")
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument("--inner-steps", type=int, default=50, help="number of inner steps")
################################
# Model Prop args #
################################
parser.add_argument("--hyper-nhid", type=int, default=3, help="num. hidden layers hypernetwork")
parser.add_argument("--embed-nlayers", type=int, default=3, help="num. layers embedding network")
parser.add_argument("--embed-batches", type=int, default=1, help="batches used to estimate rescaling")
parser.add_argument("--embed-split", type=str, default='train', help="use train or test data to embed")
parser.add_argument("--embed-y", type=str2bool, default=True, help="embed y as well as x")
parser.add_argument("--embed-model", type=str, default='cnn', help="embed with cnn or mlp")
parser.add_argument("--inner-lr", type=float, default=2e-3, help="learning rate for inner optimizer")
parser.add_argument("--lr", type=float, default=2e-4, help="learning rate")
parser.add_argument("--wd", type=float, default=1e-3, help="weight decay")
parser.add_argument("--inner-wd", type=float, default=5e-5, help="inner weight decay")
parser.add_argument("--embed-dim", type=int, default=-1, help="embedding dim")
parser.add_argument("--embed-lr", type=float, default=None, help="embedding learning rate")
parser.add_argument("--hyper-hid", type=int, default=100, help="hypernet hidden dim")
parser.add_argument("--embed-hid", type=int, default=20, help="embednet hidden dim")
parser.add_argument("--spec-norm", type=str2bool, default=False, help="hypernet hidden dim")
parser.add_argument("--nkernels", type=int, default=16, help="number of kernels for cnn model")
#############################
# General args #
#############################
parser.add_argument("--gpu", type=int, default=0, help="gpu device ID")
parser.add_argument("--eval-every", type=int, default=30, help="eval every X selected epochs")
parser.add_argument("--save-path", type=str, default="results", help="dir path for output file")
parser.add_argument("--mask-absent", type=str2bool, default=True, help="mask absent classes at eval")
parser.add_argument("--seed", type=int, default=42, help="seed value")
args = parser.parse_args()
assert args.gpu <= torch.cuda.device_count(), f"--gpu flag should be in range [0,{torch.cuda.device_count() - 1}]"
set_logger()
set_seed(args.seed)
if args.gpu == -1:
args.gpu = torch.cuda.current_device()
device = get_device(gpus=args.gpu) if torch.cuda.is_available() else 'cpu'
if args.data_name == 'cifar10':
args.classes_per_node = 2
else:
args.classes_per_node = 10
print('Running using seed:', args.seed)
train(
data_name=args.data_name,
data_path=args.data_path,
classes_per_node=args.classes_per_node,
num_nodes=args.num_nodes,
num_train_nodes=args.num_train_nodes,
clients_per_step=args.clients_per_step,
partition_type=args.partition_type,
alpha_train=args.alpha_train,
alpha_test=args.alpha_test,
steps=args.num_steps,
inner_steps=args.inner_steps,
optim=args.optim,
lr=args.lr,
inner_lr=args.inner_lr,
embed_lr=args.embed_lr,
wd=args.wd,
inner_wd=args.inner_wd,
embed_dim=args.embed_dim,
embed_hid=args.embed_hid,
embed_nlayers=args.embed_nlayers,
embed_batches=args.embed_batches,
embed_split=args.embed_split,
embed_y=args.embed_y,
embed_model=args.embed_model,
hyper_hid=args.hyper_hid,
hyper_nhid=args.hyper_nhid,
n_kernels=args.nkernels,
bs=args.batch_size,
device=device,
eval_every=args.eval_every,
save_path=args.save_path,
mask_absent=args.mask_absent,
seed=args.seed
)