From e6afddd0cc41f0124a5a22ac34e917fdb954378f Mon Sep 17 00:00:00 2001 From: jomjol <30766535+jomjol@users.noreply.github.com> Date: Thu, 11 Apr 2024 21:03:05 +0200 Subject: [PATCH] v17.0.1 --- ..._Digital-Readout-Small-v2-checkpoint.ipynb | 1315 +++++++++-------- 01 - Clean Images.ipynb | 82 + ...oint.ipynb => 02 - Image_Preparation.ipynb | 17 +- Image_Preparation.ipynb | 133 -- Train_CNN_Digital-Readout-Small-v2.ipynb | 1315 +++++++++-------- collectmeterdigits/__init__.py | 1 + collectmeterdigits/__main__.py | 46 + .../__pycache__/__init__.cpython-311.pyc | Bin 0 -> 288 bytes .../__pycache__/__init__.cpython-39.pyc | Bin 0 -> 254 bytes .../__pycache__/collect.cpython-311.pyc | Bin 0 -> 13773 bytes .../__pycache__/collect.cpython-39.pyc | Bin 0 -> 6752 bytes .../__pycache__/glob.cpython-311.pyc | Bin 0 -> 303 bytes .../__pycache__/glob.cpython-39.pyc | Bin 0 -> 264 bytes .../__pycache__/labeling.cpython-311.pyc | Bin 0 -> 12781 bytes .../__pycache__/labeling.cpython-39.pyc | Bin 0 -> 6105 bytes .../__pycache__/predict.cpython-311.pyc | Bin 0 -> 2835 bytes .../__pycache__/predict.cpython-39.pyc | Bin 0 -> 1468 bytes collectmeterdigits/collect.py | 229 +++ collectmeterdigits/glob.py | 2 + collectmeterdigits/hash_manual.py | 29 + collectmeterdigits/labeling.py | 220 +++ .../models/dig-class100-0160_s2_q.tflite | Bin 0 -> 226480 bytes collectmeterdigits/predict.py | 57 + data/HistoricHashData.txt | 1246 ++++++++++++++++ dig-class11_1800_s2.tflite | Bin 0 -> 356676 bytes dig-class11_1800_s2_q.tflite | Bin 0 -> 97240 bytes dig-class11_1800_s2_q.tflite.tflite | Bin 0 -> 356676 bytes test/fingerprint.pb | 1 + test/saved_model.pb | Bin 0 -> 90392 bytes test/variables/variables.data-00000-of-00001 | Bin 0 -> 707140 bytes test/variables/variables.index | Bin 0 -> 1684 bytes .../0 - 0_1_20211231-092401.jpg | Bin 950 -> 0 bytes .../0.0_dig1_20211007-142923.jpg | Bin 2022 -> 0 bytes .../0_0_digit1_20210323-194921.jpg | Bin 1326 -> 0 bytes .../0_0_digit2_20210422-161722.jpg | Bin 1583 -> 0 bytes .../0_0_digit3_20210406-114340.jpg | Bin 1900 -> 0 bytes .../0_0_nt5_20210625-192438.jpg | Bin 1381 -> 0 bytes .../0_1_ht5_20210626-092329.jpg | Bin 1367 -> 0 bytes .../0_3_ht1_20210705-044841.jpg | Bin 1495 -> 0 bytes .../0_7_nt5_20210627-214025.jpg | Bin 1392 -> 0 bytes .../0_8_ht1_20210625-211611.jpg | Bin 1400 -> 0 bytes .../0_8_ht5_20210625-211611.jpg | Bin 1424 -> 0 bytes .../0_8_nt5_20210625-211611.jpg | Bin 1385 -> 0 bytes ziffer_sortiert_raw/0_Ziffer_0_0019.jpg | Bin 873 -> 0 bytes .../0_dig1_20220109-120732.jpg | Bin 1896 -> 0 bytes .../0_dig1_20220109-121223.jpg | Bin 1868 -> 0 bytes .../0_dig6_20220109-081443.jpg | Bin 1134 -> 0 bytes .../0_warmwasser_44_20221030-082008.jpg | Bin 2803 -> 0 bytes .../0_warmwasser_66_20221103-204548.jpg | Bin 2894 -> 0 bytes ...0_wassertemperatur_dec2_20221120134324.jpg | Bin 2503 -> 0 bytes .../0_ziffer1_2019-11-24_08-22-52.jpg | Bin 897 -> 0 bytes .../1-10_4_20220102-144242.jpg | Bin 867 -> 0 bytes ziffer_sortiert_raw/1_1_20220211.jpg | Bin 1485 -> 0 bytes .../1_1_ROI5_20210309-072539.jpg | Bin 1676 -> 0 bytes .../1_1_digit3_20210315-230740.jpg | Bin 1489 -> 0 bytes .../1_1_ht2_20210626-090405.jpg | Bin 1330 -> 0 bytes .../1_1_ht2_20210629-005435.jpg | Bin 1506 -> 0 bytes .../1_1_ht7_20210626-121031.jpg | Bin 1149 -> 0 bytes .../1_1_nt2_20210626-090405.jpg | Bin 1116 -> 0 bytes .../1_1_nt2_20210626-090856.jpg | Bin 1127 -> 0 bytes ziffer_sortiert_raw/1_2_20220211.jpg | Bin 1456 -> 0 bytes .../1_8_nt4_20210625-211611.jpg | Bin 1325 -> 0 bytes .../1_dig1_20220725-020202.jpg | Bin 1340 -> 0 bytes .../1_dig3_20220629-061155.jpg | Bin 1236 -> 0 bytes .../1_dig8_20220627-194122.jpg | Bin 1686 -> 0 bytes .../1_waerme_6_20221031-112301.jpg | Bin 2690 -> 0 bytes .../1_ziffer5_2019-10-26_11-58-57.jpg | Bin 833 -> 0 bytes .../1_ziffer5_2020-04-17_14-42-54.jpg | Bin 1048 -> 0 bytes .../2.0_dig3_20211014-213529.jpg | Bin 2081 -> 0 bytes .../2_10_ROI2_20210225-023326.jpg | Bin 954 -> 0 bytes .../2_10_ROI2_20210225-053804.jpg | Bin 963 -> 0 bytes .../2_10_ROI2_20210225-083323.jpg | Bin 959 -> 0 bytes ziffer_sortiert_raw/2_2.jpg | Bin 1655 -> 0 bytes ziffer_sortiert_raw/2_23654.jpg | Bin 1428 -> 0 bytes ziffer_sortiert_raw/2_2_20220211.jpg | Bin 1655 -> 0 bytes .../2_2_ROI2_20210224-233751.jpg | Bin 951 -> 0 bytes .../2_2_ROI2_20210225-060710.jpg | Bin 957 -> 0 bytes .../2_2_ROI2_20210225-064128.jpg | Bin 959 -> 0 bytes .../2_2_ROI3_20210424-160317.jpg | Bin 1762 -> 0 bytes .../2_2_dig5_20210629-181611.jpg | Bin 1481 -> 0 bytes .../2_2_digit3_20210320-014308.jpg | Bin 1263 -> 0 bytes .../2_2_ht6_20210626-093311.jpg | Bin 1253 -> 0 bytes .../2_dig3_20220109-123147.jpg | Bin 1919 -> 0 bytes .../2_dig8_20220627-190725.jpg | Bin 1928 -> 0 bytes .../2_red1_19700109-105856.jpg | Bin 1315 -> 0 bytes ..._wassertemperatur_dec2_20221120-141324.jpg | Bin 2225 -> 0 bytes .../2_ziffer3_2019-11-24_08-32-52.jpg | Bin 892 -> 0 bytes ziffer_sortiert_raw/3-7_7_20211231-082402.jpg | Bin 994 -> 0 bytes ziffer_sortiert_raw/3_11.jpg | Bin 1730 -> 0 bytes ziffer_sortiert_raw/3_31.jpg | Bin 1464 -> 0 bytes .../3_3_ROI4_20210316-171213.jpg | Bin 1838 -> 0 bytes .../3_3_dig2_20210628-183804.jpg | Bin 1305 -> 0 bytes .../3_3_dig2_20210628-221205.jpg | Bin 1311 -> 0 bytes .../3_5_dig5_20210629-184812.jpg | Bin 1503 -> 0 bytes .../3_8e8af8f18fce9dfdc3f560597674748f.jpg | Bin 1278 -> 0 bytes .../3_9_dig2_20210628-182804.jpg | Bin 1278 -> 0 bytes .../3_9_dig2_20210629-143210.jpg | Bin 1318 -> 0 bytes .../3_9_dig2_20210629-181211.jpg | Bin 1332 -> 0 bytes .../3_9_dig2_20210629-201116.jpg | Bin 1287 -> 0 bytes .../3_9_dig2_20210629-202916.jpg | Bin 1291 -> 0 bytes .../3_9_dig2_20210629-213437.jpg | Bin 1324 -> 0 bytes .../3_9_dig2_20210629-215437.jpg | Bin 1318 -> 0 bytes .../3_dig3_20220419-110524.jpg | Bin 1148 -> 0 bytes .../3_digit3_20210816-132705.jpg | Bin 1260 -> 0 bytes ..._wassertemperatur_dec2_20221120-150123.jpg | Bin 2092 -> 0 bytes .../4 -4_3_20211231-094402.jpg | Bin 814 -> 0 bytes ziffer_sortiert_raw/4-1_3_20211231-120401.jpg | Bin 823 -> 0 bytes .../4_0_ht6_20210627-222846.jpg | Bin 1252 -> 0 bytes .../4_1_ht6_20210627-202210.jpg | Bin 1246 -> 0 bytes ziffer_sortiert_raw/4_26142.jpg | Bin 1401 -> 0 bytes .../4_4_ROI4_20210308-222020.jpg | Bin 1136 -> 0 bytes .../4_4_dig5_20210629-202316.jpg | Bin 1480 -> 0 bytes .../4_4_ht6_20210626-191722.jpg | Bin 1228 -> 0 bytes .../4_805e1ac0528dc20138db30bc8ad061d8.jpg | Bin 1226 -> 0 bytes .../4_dig1_20220725-200205.jpg | Bin 1490 -> 0 bytes .../4_dig5_20220409-050651.jpg | Bin 1136 -> 0 bytes .../4_dig8_20220627-201028.jpg | Bin 1912 -> 0 bytes .../4_dig9_20220627-194613.jpg | Bin 1738 -> 0 bytes .../4_waerme_5_20221030-064008.jpg | Bin 2976 -> 0 bytes .../4_waerme_5_20221030-081008.jpg | Bin 2464 -> 0 bytes .../5_0f2eb48a7067c123e6fd1c65d6f68b6a.jpg | Bin 1263 -> 0 bytes .../5_5_ROI3_20210315-220240.jpg | Bin 1664 -> 0 bytes .../5_5_ROI3_20210320-014808.jpg | Bin 1338 -> 0 bytes .../5_5_dig5_20210628-183204.jpg | Bin 1507 -> 0 bytes .../5_5_digit7_20210526-100757.jpg | Bin 3892 -> 0 bytes .../5_5_nt3_20210625-175228.jpg | Bin 1336 -> 0 bytes .../5_dig3_20220629-040655.jpg | Bin 1369 -> 0 bytes .../5_dig5_20220413-000819.jpg | Bin 1118 -> 0 bytes ziffer_sortiert_raw/6-1.jpg | Bin 634 -> 0 bytes .../6.0_dig5_20210923-091656.jpg | Bin 1840 -> 0 bytes .../6_6_ROI4_20210419-105812.jpg | Bin 1675 -> 0 bytes .../6_dig5b_19700109-105449.jpg | Bin 1822 -> 0 bytes .../6_dig6_20220102-215020.jpg | Bin 2894 -> 0 bytes ..._wassertemperatur_dec2_20221119-183727.jpg | Bin 2260 -> 0 bytes ziffer_sortiert_raw/7-1_6_20211231-120401.jpg | Bin 917 -> 0 bytes .../7.0_dig3_20211005-135251.jpg | Bin 1847 -> 0 bytes .../7.0_dig5_20210923-092147.jpg | Bin 1701 -> 0 bytes .../7_0_dig5_20210629-093808.jpg | Bin 1458 -> 0 bytes .../7_0_dig5_20210629-095608.jpg | Bin 1455 -> 0 bytes .../7_0_dig5_20210629-130409.jpg | Bin 1464 -> 0 bytes .../7_10e7c4f283a7a1b58441be5d4b5ec43d.jpg | Bin 1281 -> 0 bytes ziffer_sortiert_raw/7_1_20220211.jpg | Bin 1592 -> 0 bytes .../7_1_dig4_20210628-184404.jpg | Bin 1462 -> 0 bytes ziffer_sortiert_raw/7_2_20220211.jpg | Bin 1600 -> 0 bytes .../7_7_ROI4_20210312-235358.jpg | Bin 1742 -> 0 bytes .../7_7_dig4_20210628-180600.jpg | Bin 1484 -> 0 bytes .../7_7_dig4_20210628-183604.jpg | Bin 1453 -> 0 bytes .../7_7_dig4_20210628-223605.jpg | Bin 1461 -> 0 bytes .../7_7_dig5_20210730-182850.jpg | Bin 1282 -> 0 bytes .../7_7_nt6_20210626-043348.jpg | Bin 1224 -> 0 bytes .../7_dig5_20220106-034509.jpg | Bin 1999 -> 0 bytes .../7_dig6_20220106-171136 (2).jpg | Bin 2239 -> 0 bytes .../7_dig6_20220106-171136.jpg | Bin 2239 -> 0 bytes .../7_dig6_20220222-215933.jpg | Bin 2411 -> 0 bytes .../7_dig8_20220627-222615.jpg | Bin 1768 -> 0 bytes .../7_dig9_20220627-191707.jpg | Bin 1625 -> 0 bytes ziffer_sortiert_raw/7_digit7_073420.jpg | Bin 2301 -> 0 bytes ziffer_sortiert_raw/8_1.jpg | Bin 9363 -> 0 bytes .../8_20200816-094909_digit5.jpg | Bin 3006 -> 0 bytes ziffer_sortiert_raw/8_2_20220211.jpg | Bin 1684 -> 0 bytes .../8_8_dig1_20210628-183404.jpg | Bin 1189 -> 0 bytes .../8_dig4_20220108-203536.jpg | Bin 2108 -> 0 bytes .../8_dig4_20220108-204027.jpg | Bin 2113 -> 0 bytes .../8_dig5_20220106-060123 (2).jpg | Bin 2306 -> 0 bytes .../8_dig7_20220627-184801.jpg | Bin 2170 -> 0 bytes .../8_kuehlung_22_20221030-205507.jpg | Bin 2944 -> 0 bytes .../8_kuehlung_22_20221103-072050.jpg | Bin 2981 -> 0 bytes ..._wassertemperatur_dec2_20221119-195826.jpg | Bin 2490 -> 0 bytes .../8_ziffer4_2019-11-01_06-37-35.jpg | Bin 900 -> 0 bytes .../9.0_dig5_20210926-143749.jpg | Bin 1796 -> 0 bytes .../9_0_ht3_20210629-071741.jpg | Bin 1567 -> 0 bytes ziffer_sortiert_raw/9_25057.jpg | Bin 1417 -> 0 bytes ziffer_sortiert_raw/9_2_20220211.jpg | Bin 1634 -> 0 bytes ziffer_sortiert_raw/9_41.jpg | Bin 1725 -> 0 bytes .../9_8_ht3_20210625-211611.jpg | Bin 1457 -> 0 bytes .../9_9_ht3_20210625-172813.jpg | Bin 1451 -> 0 bytes .../9_9_ht3_20210626-085542.jpg | Bin 1460 -> 0 bytes .../9_9_ht3_20210626-171115.jpg | Bin 1460 -> 0 bytes .../9_9_ht3_20210629-053102.jpg | Bin 1639 -> 0 bytes .../9_c33d078f5bdf3f8511f53d7bbb847249.jpg | Bin 1335 -> 0 bytes .../9_dig4_19700109-004128.jpg | Bin 1805 -> 0 bytes .../9_dig4_20220109-121223.jpg | Bin 2099 -> 0 bytes .../9_dig5_20220310-020847.jpg | Bin 1104 -> 0 bytes .../9_dig8_20220627-185252.jpg | Bin 2010 -> 0 bytes .../9_waerme_5_20221101-210036.jpg | Bin 2680 -> 0 bytes ..._wassertemperatur_dec2_20221120-132224.jpg | Bin 2391 -> 0 bytes .../NaN_0_nt7_20210627-222846.jpg | Bin 1499 -> 0 bytes .../NaN_10_ROI2_20210225-114748.jpg | Bin 977 -> 0 bytes .../NaN_10_digit8_20210406-160257.jpg | Bin 1794 -> 0 bytes .../NaN_10_ht6_20210629-015737.jpg | Bin 1553 -> 0 bytes .../NaN_20200814-004435_digit3.jpg | Bin 7558 -> 0 bytes .../NaN_20200814-015636_digit3.jpg | Bin 7558 -> 0 bytes .../NaN_20200814-034016_digit3.jpg | Bin 7558 -> 0 bytes .../NaN_20200814-062224_digit3.jpg | Bin 7558 -> 0 bytes .../NaN_20200814-063206_digit3.jpg | Bin 7558 -> 0 bytes .../NaN_20200912-044544_ROI5.jpg | Bin 5526 -> 0 bytes ziffer_sortiert_raw/NaN_2815.jpg | Bin 1392 -> 0 bytes .../NaN_2_ROI3_20210309-072539.jpg | Bin 1612 -> 0 bytes .../NaN_2_ROI3_20210309-093538.jpg | Bin 1620 -> 0 bytes .../NaN_3_ROI3_20210506-070557.jpg | Bin 1648 -> 0 bytes .../NaN_3f_7_digit7_20210406-133800.jpg | Bin 1814 -> 0 bytes .../NaN_3f_7_digit7_20210406-134251.jpg | Bin 1810 -> 0 bytes .../NaN_4_dig6_20210726-040341.jpg | Bin 1041 -> 0 bytes .../NaN_4_digit7_20210406-160257.jpg | Bin 1801 -> 0 bytes .../NaN_4_digit8_20210406-114831.jpg | Bin 1781 -> 0 bytes .../NaN_4_digit8_20210406-115029.jpg | Bin 1783 -> 0 bytes .../NaN_5_dig6_20210629-140209.jpg | Bin 1494 -> 0 bytes .../NaN_6_dig6_20210629-091808.jpg | Bin 1548 -> 0 bytes .../NaN_7_dig3_20210704-150201.jpg | Bin 1006 -> 0 bytes .../NaN_D8_2020-08-13_14-35-22.jpg | Bin 945 -> 0 bytes .../NaN_D8_2020-08-14_13-31-10.jpg | Bin 954 -> 0 bytes .../NaN_D8_2020-08-14_14-03-49.jpg | Bin 963 -> 0 bytes .../NaN_D8_2020-08-15_14-04-25.jpg | Bin 949 -> 0 bytes .../NaN_D8_2020-08-16_02-14-25.jpg | Bin 932 -> 0 bytes .../NaN_D8_2020-08-16_14-20-45.jpg | Bin 955 -> 0 bytes .../NaN_D8_2020-08-17_12-24-48.jpg | Bin 941 -> 0 bytes .../NaN_D8_2020-08-17_12-53-57.jpg | Bin 943 -> 0 bytes .../NaN_D8_2020-08-20_10-08-28.jpg | Bin 939 -> 0 bytes .../NaN_D8_2020-08-20_10-09-02.jpg | Bin 933 -> 0 bytes .../NaN_D8_2020-08-20_13-30-55.jpg | Bin 954 -> 0 bytes .../NaN_D8_2020-08-20_13-35-30.jpg | Bin 964 -> 0 bytes .../NaN_D8_2020-08-20_13-53-57.jpg | Bin 952 -> 0 bytes .../NaN_D8_2020-08-20_16-23-23.jpg | Bin 931 -> 0 bytes .../NaN_D8_2020-08-20_16-53-26.jpg | Bin 923 -> 0 bytes .../NaN_D8_2020-08-22_03-49-58.jpg | Bin 1060 -> 0 bytes .../NaN_D8_2020-08-22_04-19-57.jpg | Bin 1054 -> 0 bytes .../NaN_D8_2020-08-22_06-19-40.jpg | Bin 1014 -> 0 bytes .../NaN_D8_2020-08-22_19-20-10.jpg | Bin 1049 -> 0 bytes .../NaN_D8_2020-08-24_12-44-07.jpg | Bin 1051 -> 0 bytes .../NaN_D8_2020-08-24_19-14-45.jpg | Bin 1028 -> 0 bytes .../NaN_D8_2020-08-24_19-44-43.jpg | Bin 1032 -> 0 bytes .../NaN_D8_2020-08-25_09-44-49.jpg | Bin 1042 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_0198.jpg | Bin 894 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_0590.jpg | Bin 915 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_0693.jpg | Bin 920 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_0804.jpg | Bin 909 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_0891.jpg | Bin 908 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1256.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1257.jpg | Bin 666 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1259.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1266.jpg | Bin 662 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1269.jpg | Bin 783 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1271.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1273.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1274.jpg | Bin 716 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1277.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1278.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1281.jpg | Bin 774 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1283.jpg | Bin 643 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_1284.jpg | Bin 796 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_2212.jpg | Bin 711 -> 0 bytes ziffer_sortiert_raw/NaN_Ziffer_NaN_3451.jpg | Bin 911 -> 0 bytes ziffer_sortiert_raw/NaN_digit7_360610.jpg | Bin 2351 -> 0 bytes ziffer_sortiert_raw/NaN_digit8_213207.jpg | Bin 2399 -> 0 bytes ziffer_sortiert_raw/NaN_digit8_292900.jpg | Bin 2344 -> 0 bytes ziffer_sortiert_raw/NaN_digit8_350211.jpg | Bin 2346 -> 0 bytes ziffer_sortiert_raw/NaN_digit8_503821.jpg | Bin 2311 -> 0 bytes ziffer_sortiert_raw/NaN_digit8_534307.jpg | Bin 2467 -> 0 bytes ziffer_sortiert_raw/NaN_digit8_571722.jpg | Bin 2380 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-20-06.jpg | Bin 1296 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-30-06.jpg | Bin 1304 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-40-06.jpg | Bin 1297 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-50-06.jpg | Bin 1304 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-00-06.jpg | Bin 1301 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-10-06.jpg | Bin 1305 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-20-06.jpg | Bin 1287 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-30-06.jpg | Bin 1298 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-40-06.jpg | Bin 1296 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-50-06.jpg | Bin 1304 -> 0 bytes .../NaN_ziffer1_2020-04-16_13-00-06.jpg | Bin 1291 -> 0 bytes .../NaN_ziffer1_2020-05-02_07-40-06.jpg | Bin 1341 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-22-52.jpg | Bin 914 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-27-52.jpg | Bin 913 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-32-52.jpg | Bin 918 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-37-52.jpg | Bin 912 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-42-52.jpg | Bin 912 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-47-52.jpg | Bin 916 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-52-52.jpg | Bin 920 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-57-52.jpg | Bin 917 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-02-52.jpg | Bin 920 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-07-52.jpg | Bin 924 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-12-52.jpg | Bin 925 -> 0 bytes .../NaN_ziffer5_2020-04-25_09-30-06.jpg | Bin 1520 -> 0 bytes .../NaN_ziffer5_2020-04-25_10-00-06.jpg | Bin 1519 -> 0 bytes .../NaN_ziffer5_2020-04-25_10-30-06.jpg | Bin 1555 -> 0 bytes .../NaN_ziffer5_2020-04-25_10-50-06.jpg | Bin 1554 -> 0 bytes .../NaN_ziffer5_2020-05-02_11-00-06.jpg | Bin 1554 -> 0 bytes .../NaN_ziffer5_2020-05-09_04-20-06.jpg | Bin 1565 -> 0 bytes .../NaN_ziffer5_2020-05-09_05-58-03.jpg | Bin 1531 -> 0 bytes .../NaN_ziffer5_2020-05-09_06-00-07.jpg | Bin 1529 -> 0 bytes .../NaN_ziffer5_2020-05-11_08-10-07.jpg | Bin 1578 -> 0 bytes .../NaN_ziffer5_2020-05-13_23-50-06.jpg | Bin 1512 -> 0 bytes .../NaN_ziffer5_2020-05-14_03-00-06.jpg | Bin 1508 -> 0 bytes .../NaN_ziffer5_2020-05-16_02-00-07.jpg | Bin 1583 -> 0 bytes .../NaN_ziffer5_2020-05-16_05-40-06.jpg | Bin 1539 -> 0 bytes .../NaN_ziffer5_2020-05-16_05-50-06.jpg | Bin 1540 -> 0 bytes .../NaN_ziffer5_2020-05-16_06-05-08.jpg | Bin 1514 -> 0 bytes .../NaN_ziffer5_2020-05-18_02-00-23.jpg | Bin 1590 -> 0 bytes .../NaN_ziffer5_2020-05-18_04-10-09.jpg | Bin 1599 -> 0 bytes .../NaN_ziffer5_2020-05-19_19-40-14.jpg | Bin 1553 -> 0 bytes .../NaN_ziffer5_2020-05-20_00-50-13.jpg | Bin 1502 -> 0 bytes .../NaN_ziffer5_2020-05-20_03-10-13.jpg | Bin 1496 -> 0 bytes .../NaN_ziffer5_2020-05-20_05-50-14.jpg | Bin 1494 -> 0 bytes .../NaN_ziffer5_2020-05-24_16-40-14.jpg | Bin 1558 -> 0 bytes .../0 - 0_1_20211231-090402.jpg | Bin 815 -> 1407 bytes .../0 - 0_1_20211231-092401.jpg | Bin 811 -> 0 bytes .../0 -0_5_20211231-080400.jpg | Bin 811 -> 1383 bytes ziffer_sortiert_resize/0-1.jpg | Bin 814 -> 1262 bytes .../0-1_5_20211231-062402.jpg | Bin 807 -> 1349 bytes ziffer_sortiert_resize/0-2.jpg | Bin 822 -> 1275 bytes ziffer_sortiert_resize/0.0_01.jpg | Bin 828 -> 1478 bytes ziffer_sortiert_resize/0.0_03.jpg | Bin 860 -> 1544 bytes .../0.0_ROI0_20211125-030625.jpg | Bin 870 -> 1519 bytes .../0.0_ROI0_20211125-034125.jpg | Bin 893 -> 1563 bytes .../0.0_dig1_20211007-142423.jpg | Bin 892 -> 1635 bytes .../0.0_dig1_20211007-142923.jpg | Bin 894 -> 0 bytes ziffer_sortiert_resize/0.0_lcd.jpg | Bin 801 -> 1445 bytes .../0.0_main_dig2_20240314-192710.jpg | Bin 796 -> 1236 bytes .../0.0_main_dig3_20240315-131709.jpg | Bin 800 -> 1235 bytes .../0.0_main_dig6_20240316-101823.jpg | Bin 871 -> 1429 bytes ziffer_sortiert_resize/0.jpg | Bin 838 -> 1551 bytes ziffer_sortiert_resize/0_01.jpg | Bin 859 -> 1552 bytes ziffer_sortiert_resize/0_02.jpg | Bin 822 -> 1424 bytes ziffer_sortiert_resize/0_03.jpg | Bin 851 -> 1548 bytes .../0_03a64e4b24e11fe63f91e748eaa9e807.jpg | Bin 762 -> 1240 bytes .../0_0_ROI2_20210604-120641a.jpg | Bin 893 -> 1740 bytes .../0_0_ROI3_20210528-145542.jpg | Bin 906 -> 1704 bytes .../0_0_dig2_20210730-182850.jpg | Bin 846 -> 1456 bytes .../0_0_dig6_20210629-081808.jpg | Bin 886 -> 1630 bytes .../0_0_dig6_20210629-202316.jpg | Bin 878 -> 1590 bytes .../0_0_digit1_20210322-100645.jpg | Bin 813 -> 1417 bytes .../0_0_digit1_20210323-194921.jpg | Bin 804 -> 0 bytes .../0_0_digit1_20210422-092016.jpg | Bin 856 -> 1565 bytes .../0_0_digit2_20210422-161722.jpg | Bin 848 -> 0 bytes .../0_0_digit3_20210406-111334.jpg | Bin 839 -> 1513 bytes .../0_0_digit3_20210406-114340.jpg | Bin 841 -> 0 bytes .../0_0_ht1_20210625-172323.jpg | Bin 808 -> 1424 bytes .../0_0_ht1_20210626-090405.jpg | Bin 810 -> 1458 bytes .../0_0_ht1_20210628-223233.jpg | Bin 836 -> 1523 bytes .../0_0_ht5_20210626-111219.jpg | Bin 811 -> 1428 bytes .../0_0_ht5_20210629-195442.jpg | Bin 829 -> 1476 bytes .../0_0_nt1_20210625-212553.jpg | Bin 742 -> 1241 bytes .../0_0_nt1_20210626-041424.jpg | Bin 748 -> 1260 bytes .../0_0_nt1_20210626-090405.jpg | Bin 733 -> 1219 bytes .../0_0_nt1_20210629-104638.jpg | Bin 774 -> 1342 bytes .../0_0_nt5_20210625-192438.jpg | Bin 776 -> 0 bytes .../0_0_nt5_20210628-001037.jpg | Bin 776 -> 1337 bytes ziffer_sortiert_resize/0_1.jpg | Bin 844 -> 1355 bytes .../0_10_dig1_20210730-190247.jpg | Bin 798 -> 1331 bytes .../0_10_nt1_20210626-095934.jpg | Bin 730 -> 1188 bytes .../0_11fcbe15745867569ad14e4dae9ed383.jpg | Bin 857 -> 1573 bytes ziffer_sortiert_resize/0_16128.jpg | Bin 925 -> 1688 bytes .../0_1619417105741-digit4.jpg | Bin 767 -> 1016 bytes ziffer_sortiert_resize/0_16351.jpg | Bin 909 -> 1623 bytes ziffer_sortiert_resize/0_1_20220211.jpg | Bin 891 -> 1636 bytes .../0_1_ht5_20210626-090405.jpg | Bin 815 -> 1431 bytes .../0_1_ht5_20210626-092329.jpg | Bin 811 -> 0 bytes .../0_1f55da17bbac6b5fa2029212a4a5d3b6.jpg | Bin 772 -> 1284 bytes ziffer_sortiert_resize/0_2.jpg | Bin 894 -> 1449 bytes .../0_20200814-015636_digit1.jpg | Bin 911 -> 1704 bytes .../0_20200815-051321_digit1.jpg | Bin 902 -> 1647 bytes .../0_20200910-050348_ROI5.jpg | Bin 823 -> 1500 bytes ziffer_sortiert_resize/0_20201.jpg | Bin 934 -> 1677 bytes ziffer_sortiert_resize/0_2_20220211.jpg | Bin 934 -> 1725 bytes .../0_3_ht1_20210705-044841.jpg | Bin 831 -> 0 bytes .../0_3af9b6b60b4525bb0f369fa34a0b4d4f.jpg | Bin 840 -> 1553 bytes .../0_40899f142792141da5f4c9a640e3aeea.jpg | Bin 758 -> 1227 bytes .../0_5daefad8c37c60d01f7437b958caf0a7.jpg | Bin 850 -> 1561 bytes .../0_7_nt5_20210627-214025.jpg | Bin 761 -> 0 bytes .../0_8_ht1_20210625-211611.jpg | Bin 803 -> 0 bytes .../0_8_ht5_20210625-211611.jpg | Bin 815 -> 0 bytes .../0_8_nt5_20210625-211611.jpg | Bin 782 -> 0 bytes .../0_8_nt5_20210626-094253.jpg | Bin 780 -> 1326 bytes .../0_9_ht1_20210704-105634.jpg | Bin 830 -> 1474 bytes ziffer_sortiert_resize/0_Ziffer_0_0001.jpg | Bin 868 -> 1257 bytes ziffer_sortiert_resize/0_Ziffer_0_0019.jpg | Bin 872 -> 0 bytes ziffer_sortiert_resize/0_Ziffer_0_0136.jpg | Bin 887 -> 1299 bytes .../0_a6ea4ab7ac49d249886dbe795ff0ee23.jpg | Bin 757 -> 1229 bytes ziffer_sortiert_resize/0_arbitrary.jpg | Bin 805 -> 1364 bytes .../0_arbitrary_20220227.jpg | Bin 825 -> 1469 bytes ziffer_sortiert_resize/0_b1.jpg | Bin 832 -> 1474 bytes ziffer_sortiert_resize/0_c1.jpg | Bin 884 -> 1587 bytes .../0_cislo2_20220314-162342.jpg | Bin 891 -> 1631 bytes .../0_dig0001_20220501-120504.jpg | Bin 776 -> 1172 bytes .../0_dig10000_20220504-154516.jpg | Bin 811 -> 1281 bytes .../0_dig1_20210910-180136.jpg | Bin 878 -> 1568 bytes .../0_dig1_20220109-120240.jpg | Bin 827 -> 1530 bytes .../0_dig1_20220109-120732.jpg | Bin 828 -> 0 bytes .../0_dig1_20220109-121223.jpg | Bin 819 -> 0 bytes .../0_dig1_20220204-200402.jpg | Bin 857 -> 1582 bytes .../0_dig1_20220419-110024.jpg | Bin 876 -> 1589 bytes .../0_dig1_20220627-184801.jpg | Bin 807 -> 1458 bytes .../0_dig2_19700109-022244.jpg | Bin 852 -> 1549 bytes .../0_dig2_20220419-110024.jpg | Bin 899 -> 1639 bytes .../0_dig2_20220629-080655.jpg | Bin 815 -> 1481 bytes .../0_dig3_20220629-001531.jpg | Bin 781 -> 1347 bytes .../0_dig5_20220627-184801.jpg | Bin 890 -> 1673 bytes .../0_dig6_20220109-075028.jpg | Bin 857 -> 1524 bytes .../0_dig6_20220109-081443.jpg | Bin 849 -> 0 bytes .../0_dig6_20220109-102540.jpg | Bin 845 -> 1505 bytes .../0_dig7_20220205-102718.jpg | Bin 916 -> 1705 bytes .../0_dig8_20220109-102540.jpg | Bin 870 -> 1554 bytes .../0_dig8_20220205-123324.jpg | Bin 858 -> 1573 bytes .../0_dig9_20220627-184801.jpg | Bin 848 -> 1570 bytes .../0_digit2_2020-04-17_13-09-30.jpg | Bin 907 -> 1719 bytes .../0_digit6_20210808-205544.jpg | Bin 807 -> 1446 bytes .../0_litre3_20220312-060001.jpg | Bin 875 -> 1643 bytes .../0_red1_19700109-011940.jpg | Bin 820 -> 1500 bytes .../0_waerme_2_20221030-082508.jpg | Bin 761 -> 1420 bytes .../0_waerme_2_20221103-072550.jpg | Bin 782 -> 1483 bytes .../0_warmwasser_44_20221030-061008.jpg | Bin 803 -> 1543 bytes .../0_warmwasser_44_20221030-061508.jpg | Bin 772 -> 1486 bytes .../0_warmwasser_44_20221030-082008.jpg | Bin 797 -> 0 bytes .../0_warmwasser_66_20221103-200049.jpg | Bin 841 -> 1630 bytes .../0_warmwasser_66_20221103-200548.jpg | Bin 846 -> 1672 bytes .../0_warmwasser_66_20221103-204548.jpg | Bin 843 -> 0 bytes ..._wassertemperatur_dec2_20221120-134024.jpg | Bin 871 -> 1648 bytes ...0_wassertemperatur_dec2_20221120134324.jpg | Bin 858 -> 0 bytes .../0_ziffer1_2019-11-24_08-22-52.jpg | Bin 896 -> 0 bytes .../0_ziffer1_2020-02-10_10-53-44 - Kopie.jpg | Bin 856 -> 1268 bytes .../0_ziffer1_2020-02-11_14-51-25 - Kopie.jpg | Bin 880 -> 1343 bytes .../0_ziffer1_2020-02-11_15-56-25 - Kopie.jpg | Bin 852 -> 1242 bytes .../0_ziffer1_2020-04-13_14-52-39.jpg | Bin 862 -> 1581 bytes .../0_ziffer2_2020-02-09_18-29-21 - Kopie.jpg | Bin 830 -> 1172 bytes .../0_ziffer2_2020-02-11_17-16-20 - Kopie.jpg | Bin 850 -> 1228 bytes .../0_ziffer4_2020-02-11_15-31-20.jpg | Bin 835 -> 1157 bytes .../1 - 1_6_20211231-092401.jpg | Bin 743 -> 1158 bytes .../1 -1_4_20211231-092401.jpg | Bin 765 -> 1180 bytes .../1 -1_5_20211231-100402.jpg | Bin 749 -> 1211 bytes ziffer_sortiert_resize/1-1.jpg | Bin 745 -> 1072 bytes .../1-10_4_20220102-144242.jpg | Bin 779 -> 0 bytes .../1-10_4_20220102-150242.jpg | Bin 767 -> 1225 bytes ziffer_sortiert_resize/1.0_01.jpg | Bin 884 -> 1605 bytes ziffer_sortiert_resize/1.0_02.jpg | Bin 786 -> 1329 bytes ziffer_sortiert_resize/1.0_03.jpg | Bin 876 -> 1595 bytes ziffer_sortiert_resize/1.0_04.jpg | Bin 857 -> 1497 bytes ziffer_sortiert_resize/1.0_2.jpg | Bin 888 -> 1544 bytes ziffer_sortiert_resize/1.0_3.jpg | Bin 789 -> 1371 bytes ziffer_sortiert_resize/1.0_4.jpg | Bin 828 -> 1347 bytes .../1.0_dig1_20211012-012538.jpg | Bin 894 -> 1648 bytes .../1.0_dig3_20211011-141456.jpg | Bin 819 -> 1503 bytes .../1.0_dig3_20211012-050842.jpg | Bin 799 -> 1432 bytes .../1.0_dig5_20210926-223759.jpg | Bin 786 -> 1392 bytes ziffer_sortiert_resize/1.0_lcd.jpg | Bin 749 -> 1295 bytes .../1.0_main_dig2_20240316-070023.jpg | Bin 778 -> 1201 bytes ziffer_sortiert_resize/1.jpg | Bin 812 -> 1443 bytes ziffer_sortiert_resize/1_01.jpg | Bin 829 -> 1489 bytes .../1_014c91ea21137efe50d44fd54b9b3b6b.jpg | Bin 826 -> 1468 bytes ziffer_sortiert_resize/1_02.jpg | Bin 833 -> 1482 bytes ziffer_sortiert_resize/1_03.jpg | Bin 823 -> 1466 bytes .../1_06c4d648df4260488a6c645b9027a912.jpg | Bin 748 -> 1191 bytes .../1_0_ht2_20210628-220327.jpg | Bin 818 -> 1425 bytes .../1_0_ht2_20210704-074629.jpg | Bin 810 -> 1360 bytes .../1_0_nt2_20210627-212552.jpg | Bin 738 -> 1213 bytes ziffer_sortiert_resize/1_1.jpg | Bin 825 -> 1420 bytes .../1_10_digit1_20210308-195955.jpg | Bin 739 -> 1273 bytes .../1_10_digit2_20210218-115746.jpg | Bin 761 -> 1233 bytes .../1_10_digit3_20210725-074728.jpg | Bin 747 -> 1204 bytes .../1_1619417105678-digit1.jpg | Bin 772 -> 1065 bytes .../1_1676ca7d8ae06a4a7981b5c60bab4545.jpg | Bin 743 -> 1207 bytes ziffer_sortiert_resize/1_1_2.jpg | Bin 834 -> 1336 bytes ziffer_sortiert_resize/1_1_20220211.jpg | Bin 825 -> 0 bytes .../1_1_ROI2_20210528-145542.jpg | Bin 836 -> 1555 bytes .../1_1_ROI2_20210605-143306.jpg | Bin 789 -> 1474 bytes .../1_1_ROI5_20210309-071039.jpg | Bin 810 -> 1446 bytes .../1_1_ROI5_20210309-072539.jpg | Bin 810 -> 0 bytes .../1_1_ROI6_20210222-154701.jpg | Bin 851 -> 1504 bytes ziffer_sortiert_resize/1_1_a.jpg | Bin 958 -> 1918 bytes ziffer_sortiert_resize/1_1_black.jpg | Bin 860 -> 1612 bytes .../1_1_dig3_20210730-182850.jpg | Bin 824 -> 1462 bytes .../1_1_dig5_20210629-111209.jpg | Bin 834 -> 1509 bytes .../1_1_dig6_20210629-103008.jpg | Bin 873 -> 1594 bytes .../1_1_digit1_20210309-090039.jpg | Bin 743 -> 1261 bytes .../1_1_digit3_20210308-193455.jpg | Bin 760 -> 1290 bytes .../1_1_digit3_20210315-230740.jpg | Bin 751 -> 0 bytes .../1_1_digit4_20210221-155227.jpg | Bin 741 -> 1234 bytes .../1_1_digit4_20210413-001553.jpg | Bin 818 -> 1479 bytes .../1_1_digit6_20210412-203053.jpg | Bin 853 -> 1537 bytes .../1_1_digit6_20210504-175516.jpg | Bin 849 -> 1568 bytes .../1_1_ht2_20210626-090405.jpg | Bin 779 -> 0 bytes .../1_1_ht2_20210629-005435.jpg | Bin 816 -> 0 bytes .../1_1_ht2_20210629-204437.jpg | Bin 819 -> 1423 bytes .../1_1_ht7_20210626-120540.jpg | Bin 756 -> 1283 bytes .../1_1_ht7_20210626-121031.jpg | Bin 759 -> 0 bytes .../1_1_nt2_20210625-194402.jpg | Bin 731 -> 1176 bytes .../1_1_nt2_20210626-090405.jpg | Bin 721 -> 0 bytes .../1_1_nt2_20210626-090856.jpg | Bin 733 -> 0 bytes .../1_1_nt2_20210629-202138.jpg | Bin 765 -> 1276 bytes .../1_1_nt4_20210625-200817.jpg | Bin 759 -> 1269 bytes .../1_1_nt4_20210626-012930.jpg | Bin 763 -> 1289 bytes .../1_1_nt4_20210626-093802.jpg | Bin 762 -> 1241 bytes ziffer_sortiert_resize/1_1_red.jpg | Bin 890 -> 1707 bytes ziffer_sortiert_resize/1_1b.jpg | Bin 811 -> 1416 bytes ziffer_sortiert_resize/1_2.jpg | Bin 804 -> 1230 bytes .../1_20200812-215522_digit2.jpg | Bin 899 -> 1647 bytes .../1_20200821-083234_digit5.jpg | Bin 796 -> 1382 bytes .../1_20200822-102208_digit2.jpg | Bin 877 -> 1608 bytes ziffer_sortiert_resize/1_25369.jpg | Bin 909 -> 1620 bytes ziffer_sortiert_resize/1_2552.jpg | Bin 897 -> 1587 bytes ziffer_sortiert_resize/1_2_20220211.jpg | Bin 832 -> 0 bytes ziffer_sortiert_resize/1_3.jpg | Bin 834 -> 1309 bytes .../1_3_dig5_20210715-154755.jpg | Bin 746 -> 1171 bytes .../1_4_ROI4_20210320-015308.jpg | Bin 774 -> 1306 bytes .../1_4_ht5_20210704-184837.jpg | Bin 803 -> 1356 bytes .../1_5ebe7f4b3a6aadcfc983875607c668c9.jpg | Bin 714 -> 1141 bytes .../1_6_digit1_20210218-112349.jpg | Bin 776 -> 1280 bytes .../1_728c6b1f40234ddc993177c0174efe63.jpg | Bin 824 -> 1496 bytes ziffer_sortiert_resize/1_749.jpg | Bin 897 -> 1583 bytes .../1_76d66170c7963795caeaa1781ea3ad43.jpg | Bin 756 -> 1203 bytes .../1_8_ht2_20210625-211611.jpg | Bin 787 -> 1305 bytes .../1_8_nt4_20210625-211611.jpg | Bin 761 -> 0 bytes .../1_D5_2020-08-16_02-14-25.jpg | Bin 794 -> 1410 bytes ziffer_sortiert_resize/1_Ziffer_1_0050.jpg | Bin 864 -> 1221 bytes ziffer_sortiert_resize/1_a1.jpg | Bin 899 -> 1652 bytes ziffer_sortiert_resize/1_a2.jpg | Bin 796 -> 1368 bytes .../1_aa7e7a6ac804b7e5964c621a678ccc32.jpg | Bin 808 -> 1439 bytes ziffer_sortiert_resize/1_arbitrary.jpg | Bin 745 -> 1206 bytes .../1_arbitrary_20220227.jpg | Bin 824 -> 1466 bytes ziffer_sortiert_resize/1_c1.jpg | Bin 903 -> 1669 bytes .../1_cislo1_20220314-112243.jpg | Bin 838 -> 1504 bytes .../1_dig0001_20220503-040503.jpg | Bin 767 -> 1134 bytes .../1_dig0001_20220504-070502.jpg | Bin 767 -> 1160 bytes .../1_dig0001_20220504-190502.jpg | Bin 765 -> 1135 bytes .../1_dig1000_20220504-154522.jpg | Bin 782 -> 1165 bytes .../1_dig1_20220629-001031.jpg | Bin 762 -> 1313 bytes .../1_dig1_20220725-020202.jpg | Bin 752 -> 0 bytes .../1_dig2_20220221-005833.jpg | Bin 805 -> 1417 bytes .../1_dig2_20220629-070155.jpg | Bin 754 -> 1326 bytes .../1_dig3_20220629-061155.jpg | Bin 748 -> 0 bytes .../1_dig4_20220627-184801.jpg | Bin 807 -> 1426 bytes .../1_dig5_20220322-000202.jpg | Bin 838 -> 1442 bytes .../1_dig5_20220322-000802.jpg | Bin 830 -> 1435 bytes .../1_dig6_20220106-034509.jpg | Bin 837 -> 1501 bytes .../1_dig6_20220205-100303.jpg | Bin 922 -> 1727 bytes .../1_dig7_20220205-121400.jpg | Bin 875 -> 1610 bytes .../1_dig7_20220627-190725.jpg | Bin 859 -> 1591 bytes .../1_dig8_20220627-194122.jpg | Bin 842 -> 0 bytes .../1_dig9_20220627-185743.jpg | Bin 785 -> 1411 bytes .../1_digit1_2020-03-22_11-01-07.jpg | Bin 791 -> 1364 bytes .../1_digit2_2020-03-22_12-44-10.jpg | Bin 815 -> 1420 bytes .../1_digit4_2020-03-22_12-14-10.jpg | Bin 799 -> 1410 bytes .../1_digit6_2020-04-17_13-58-55.jpg | Bin 764 -> 1317 bytes ziffer_sortiert_resize/1_digit6_252307.jpg | Bin 854 -> 1544 bytes ziffer_sortiert_resize/1_digit7_582007.jpg | Bin 825 -> 1480 bytes .../1_ex_0_dig4_20220222-225932.jpg | Bin 871 -> 1567 bytes .../1_litre1_20220312-134900.jpg | Bin 771 -> 1307 bytes .../1_litre3_20220312-114630.jpg | Bin 849 -> 1548 bytes .../1_red1_19700109-014344.jpg | Bin 817 -> 1498 bytes .../1_waerme_6_20221031-111301.jpg | Bin 803 -> 1503 bytes .../1_waerme_6_20221031-112301.jpg | Bin 801 -> 0 bytes .../1_warmwasser_44_20221030-100508.jpg | Bin 769 -> 1434 bytes .../1_warmwasser_44_20221030-154007.jpg | Bin 783 -> 1481 bytes .../1_warmwasser_44_20221030-203007.jpg | Bin 778 -> 1466 bytes .../1_warmwasser_55_20221103-070050.jpg | Bin 795 -> 1509 bytes .../1_warmwasser_66_20221030-085508.jpg | Bin 800 -> 1502 bytes ..._wassertemperatur_dec2_20221120-135224.jpg | Bin 791 -> 1398 bytes ..._wassertemperatur_dec2_20221120-135524.jpg | Bin 768 -> 1378 bytes .../1_ziffer3_2020-02-10_14-39-37.jpg | Bin 819 -> 1125 bytes .../1_ziffer5_2019-10-26_11-48-56.jpg | Bin 836 -> 1200 bytes .../1_ziffer5_2019-10-26_11-58-57.jpg | Bin 832 -> 0 bytes .../1_ziffer5_2020-04-17_14-42-54.jpg | Bin 802 -> 0 bytes .../2 -10_5_20211231-132401.jpg | Bin 778 -> 1250 bytes .../2 -2_6_20211231-094402.jpg | Bin 774 -> 1267 bytes .../2 -2_7_20211231-132401.jpg | Bin 808 -> 1338 bytes ziffer_sortiert_resize/2-1.jpg | Bin 825 -> 1266 bytes ziffer_sortiert_resize/2-2.jpg | Bin 842 -> 1345 bytes ziffer_sortiert_resize/2.0_1.jpg | Bin 814 -> 1489 bytes ziffer_sortiert_resize/2.0_2.jpg | Bin 828 -> 1512 bytes ziffer_sortiert_resize/2.0_3.jpg | Bin 847 -> 1463 bytes .../2.0_dig1_20211016-084357.jpg | Bin 907 -> 1708 bytes .../2.0_dig3_20211014-144127.jpg | Bin 924 -> 1739 bytes .../2.0_dig3_20211014-213529.jpg | Bin 927 -> 0 bytes .../2.0_dig4_20210923-002817.jpg | Bin 859 -> 1576 bytes .../2.0_dig4_20210923-041123.jpg | Bin 874 -> 1618 bytes ziffer_sortiert_resize/2.0_lcd.jpg | Bin 820 -> 1508 bytes .../2.0_main_dig2_20240316-072423.jpg | Bin 795 -> 1246 bytes ziffer_sortiert_resize/2.jpg | Bin 843 -> 1563 bytes ziffer_sortiert_resize/2_01.jpg | Bin 844 -> 1547 bytes ziffer_sortiert_resize/2_02.jpg | Bin 826 -> 1507 bytes ziffer_sortiert_resize/2_03.jpg | Bin 837 -> 1525 bytes .../2_0_ht6_20210626-094253.jpg | Bin 790 -> 1331 bytes .../2_0_nt7_20210627-212101.jpg | Bin 769 -> 1317 bytes ziffer_sortiert_resize/2_1.jpg | Bin 925 -> 1537 bytes .../2_10_ROI2_20210225-015928.jpg | Bin 857 -> 1497 bytes .../2_10_ROI2_20210225-023326.jpg | Bin 863 -> 0 bytes .../2_10_ROI2_20210225-053804.jpg | Bin 853 -> 0 bytes .../2_10_ROI2_20210225-083323.jpg | Bin 859 -> 0 bytes ziffer_sortiert_resize/2_13795.jpg | Bin 932 -> 1673 bytes ziffer_sortiert_resize/2_15953.jpg | Bin 916 -> 1638 bytes ziffer_sortiert_resize/2_1_20220211.jpg | Bin 873 -> 1583 bytes .../2_1b585c327471572e135c5d03440b8a04.jpg | Bin 756 -> 1271 bytes .../2_1baf133612ee8ebfbeed4304f2c892fd.jpg | Bin 839 -> 1491 bytes ziffer_sortiert_resize/2_2.jpg | Bin 864 -> 0 bytes .../2_20200822-171718_digit5.jpg | Bin 894 -> 1597 bytes .../2_20200910-010931_ROI5.jpg | Bin 820 -> 1512 bytes .../2_20200910-153847_digit1.jpg | Bin 861 -> 1561 bytes .../2_219997aa5b57ea8bf9b08014ae2a7490.jpg | Bin 756 -> 1222 bytes ziffer_sortiert_resize/2_23654.jpg | Bin 933 -> 0 bytes ziffer_sortiert_resize/2_2_2.jpg | Bin 848 -> 1331 bytes ziffer_sortiert_resize/2_2_20220211.jpg | Bin 864 -> 0 bytes .../2_2_5_20210725-100227.jpg | Bin 872 -> 1575 bytes .../2_2_ROI2_20210224-233751.jpg | Bin 859 -> 0 bytes .../2_2_ROI2_20210225-024758.jpg | Bin 849 -> 1455 bytes .../2_2_ROI2_20210225-060710.jpg | Bin 853 -> 0 bytes .../2_2_ROI2_20210225-064128.jpg | Bin 851 -> 0 bytes .../2_2_ROI2_20210605-132714a.jpg | Bin 860 -> 1630 bytes .../2_2_ROI3_20210422-092016.jpg | Bin 899 -> 1673 bytes .../2_2_ROI3_20210424-160317.jpg | Bin 906 -> 0 bytes .../2_2_ROI6_20210222-160801.jpg | Bin 865 -> 1536 bytes .../2_2_ROI6_20210308-195455.jpg | Bin 824 -> 1502 bytes .../2_2_ROI6_20210309-075539.jpg | Bin 823 -> 1493 bytes ziffer_sortiert_resize/2_2_black.jpg | Bin 891 -> 1651 bytes .../2_2_dig5_20210629-113409.jpg | Bin 863 -> 1583 bytes .../2_2_dig5_20210629-181611.jpg | Bin 863 -> 0 bytes .../2_2_dig6_20210629-140009.jpg | Bin 889 -> 1633 bytes .../2_2_dig6_20210730-182850.jpg | Bin 866 -> 1570 bytes .../2_2_digit3_20210320-011808.jpg | Bin 796 -> 1397 bytes .../2_2_digit3_20210320-014308.jpg | Bin 798 -> 0 bytes .../2_2_ht6_20210626-090405.jpg | Bin 784 -> 1335 bytes .../2_2_ht6_20210626-093311.jpg | Bin 789 -> 0 bytes .../2_2_nt7_20210625-172323.jpg | Bin 764 -> 1280 bytes .../2_2_nt7_20210627-211040.jpg | Bin 791 -> 1378 bytes ziffer_sortiert_resize/2_3.jpg | Bin 874 -> 1429 bytes .../2_4007fe24cf100045ca089d4288333d16.jpg | Bin 758 -> 1234 bytes .../2_63b713af6c19125c780ceae1ad93276a.jpg | Bin 771 -> 1285 bytes .../2_6904d38c728ef92e51eb47b2b4fa3c67.jpg | Bin 836 -> 1528 bytes .../2_6c600ccfc988e5f908a55e046a629be7.jpg | Bin 864 -> 1605 bytes .../2_D7_2020-08-08_10-15-41.jpg | Bin 784 -> 1335 bytes .../2_D7_2020-08-25_14-55-57.jpg | Bin 845 -> 1556 bytes .../2_D8_2020-08-21_20-01-07.jpg | Bin 867 -> 1587 bytes ziffer_sortiert_resize/2_arbitrary.jpg | Bin 814 -> 1390 bytes .../2_arbitrary_20220227.jpg | Bin 819 -> 1478 bytes ziffer_sortiert_resize/2_b2.jpg | Bin 920 -> 1658 bytes .../2_dig0001_20220430-150502.jpg | Bin 780 -> 1199 bytes .../2_dig0001_20220504-150503.jpg | Bin 783 -> 1204 bytes .../2_dig1_20220629-071655.jpg | Bin 813 -> 1437 bytes .../2_dig1_20220725-220205.jpg | Bin 816 -> 1458 bytes .../2_dig2_20220629-071155.jpg | Bin 811 -> 1465 bytes .../2_dig3_20220109-122656.jpg | Bin 840 -> 1573 bytes .../2_dig3_20220109-123147.jpg | Bin 852 -> 0 bytes .../2_dig3_20220109-123638.jpg | Bin 853 -> 1560 bytes .../2_dig3_20220204-200853.jpg | Bin 884 -> 1649 bytes .../2_dig3_20220629-001031.jpg | Bin 780 -> 1325 bytes .../2_dig5_20220106-172117.jpg | Bin 849 -> 1589 bytes .../2_dig5_20220328-000012.jpg | Bin 877 -> 1555 bytes .../2_dig6_20220205-121851.jpg | Bin 941 -> 1794 bytes .../2_dig7_20220627-192649.jpg | Bin 910 -> 1707 bytes .../2_dig8_20220627-190725.jpg | Bin 873 -> 0 bytes .../2_digit4_2020-03-23_18-13-21.jpg | Bin 855 -> 1562 bytes .../2_digit6_2020-04-17_15-19-36.jpg | Bin 815 -> 1424 bytes ziffer_sortiert_resize/2_digit7_350907.jpg | Bin 843 -> 1562 bytes .../2_ex_0_dig6_20220223-120430.jpg | Bin 875 -> 1621 bytes .../2_litre2_20220312-125300.jpg | Bin 859 -> 1563 bytes .../2_red1_19700109-020744.jpg | Bin 830 -> 1520 bytes .../2_red1_19700109-100949.jpg | Bin 823 -> 1513 bytes .../2_red1_19700109-102149.jpg | Bin 835 -> 1559 bytes .../2_red1_19700109-105856.jpg | Bin 834 -> 0 bytes .../2_waerme_3_20221103-070050.jpg | Bin 763 -> 1418 bytes .../2_waerme_3_20221103-072050.jpg | Bin 781 -> 1456 bytes .../2_waerme_3_20221103-160549.jpg | Bin 777 -> 1460 bytes .../2_warmwasser_11_20221030-062008.jpg | Bin 797 -> 1518 bytes .../2_warmwasser_44_20221101-000038.jpg | Bin 781 -> 1484 bytes .../2_warmwasser_55_20221031-110301.jpg | Bin 811 -> 1561 bytes .../2_warmwasser_55_20221103-162549.jpg | Bin 831 -> 1621 bytes .../2_warmwasser_55_20221103-205548.jpg | Bin 830 -> 1649 bytes ..._wassertemperatur_dec2_20221120-140724.jpg | Bin 836 -> 1524 bytes ..._wassertemperatur_dec2_20221120-141324.jpg | Bin 838 -> 0 bytes .../2_ziffer3_2019-11-24_08-07-51.jpg | Bin 892 -> 1343 bytes .../2_ziffer3_2019-11-24_08-32-52.jpg | Bin 891 -> 0 bytes .../3 -3_2_20211231-120401.jpg | Bin 814 -> 1359 bytes .../3 -3_6_20211231-110401.jpg | Bin 793 -> 1316 bytes .../3 -7_7_20211231-082402.jpg | Bin 794 -> 1334 bytes ziffer_sortiert_resize/3-1.jpg | Bin 836 -> 1335 bytes ziffer_sortiert_resize/3-2.jpg | Bin 840 -> 1325 bytes .../3-7_7_20211231-082402.jpg | Bin 794 -> 0 bytes ziffer_sortiert_resize/3.0_2.jpg | Bin 912 -> 1639 bytes ziffer_sortiert_resize/3.0_3.jpg | Bin 867 -> 1483 bytes ziffer_sortiert_resize/3.0__github417.jpg | Bin 818 -> 1252 bytes .../3.0_dig1_20210923-052859.jpg | Bin 822 -> 1494 bytes .../3.0_dig1_20211011-101735.jpg | Bin 905 -> 1739 bytes .../3.0_digit5_20210916-060857.jpg | Bin 961 -> 1816 bytes .../3.0_digit6_20210826-053404.jpg | Bin 939 -> 1783 bytes ziffer_sortiert_resize/3.0_lcd.jpg | Bin 803 -> 1437 bytes .../3.0_main_dig2_20240316-074223.jpg | Bin 788 -> 1225 bytes .../3.0_main_dig3_20240314-052210.jpg | Bin 833 -> 1336 bytes ziffer_sortiert_resize/3.jpg | Bin 839 -> 1564 bytes ziffer_sortiert_resize/3_01.jpg | Bin 813 -> 1440 bytes .../3_0136b48bf295577bf5eb0e088c75ee6a.jpg | Bin 850 -> 1554 bytes ziffer_sortiert_resize/3_02.jpg | Bin 813 -> 1426 bytes ziffer_sortiert_resize/3_03.jpg | Bin 848 -> 1536 bytes .../3_0_ht4_20210701-194658.jpg | Bin 813 -> 1451 bytes ziffer_sortiert_resize/3_1.jpg | Bin 918 -> 1749 bytes ziffer_sortiert_resize/3_11.jpg | Bin 918 -> 0 bytes ziffer_sortiert_resize/3_12272.jpg | Bin 945 -> 1714 bytes ...9-f0e73300-d4cd-11eb-9c87-fc69ebf727d8.jpg | Bin 874 -> 1596 bytes ziffer_sortiert_resize/3_1_20220211.jpg | Bin 848 -> 1544 bytes ziffer_sortiert_resize/3_2.jpg | Bin 889 -> 1460 bytes .../3_20200823-164113_digit5.jpg | Bin 889 -> 1596 bytes .../3_20200910-183027_ROI4.jpg | Bin 829 -> 1498 bytes ziffer_sortiert_resize/3_21.jpg | Bin 937 -> 1782 bytes .../3_2310fb924a5de0e2b259d6de60a2c17b.jpg | Bin 760 -> 1244 bytes ziffer_sortiert_resize/3_2_20220211.jpg | Bin 876 -> 1581 bytes ziffer_sortiert_resize/3_3.jpg | Bin 902 -> 1678 bytes ziffer_sortiert_resize/3_30733.jpg | Bin 940 -> 1720 bytes ziffer_sortiert_resize/3_31.jpg | Bin 902 -> 0 bytes .../3_3_ROI2_20210226-143925.jpg | Bin 868 -> 1482 bytes .../3_3_ROI2_20210605-131528a.jpg | Bin 893 -> 1724 bytes .../3_3_ROI3_20210312-234858.jpg | Bin 818 -> 1499 bytes .../3_3_ROI4_20210309-230614.jpg | Bin 824 -> 1496 bytes .../3_3_ROI4_20210316-171213.jpg | Bin 829 -> 0 bytes .../3_3_ROI6_20210222-130931.jpg | Bin 879 -> 1578 bytes ziffer_sortiert_resize/3_3_a.jpg | Bin 961 -> 1897 bytes .../3_3_dig2_20210628-181000.jpg | Bin 799 -> 1436 bytes .../3_3_dig2_20210628-183804.jpg | Bin 800 -> 0 bytes .../3_3_dig2_20210628-221205.jpg | Bin 799 -> 0 bytes .../3_3_dig5_20210629-195612.jpg | Bin 861 -> 1622 bytes .../3_3_dig6_20210629-084608.jpg | Bin 892 -> 1631 bytes .../3_3_digit1_20210727-105723.jpg | Bin 788 -> 1354 bytes .../3_3_digit3_20210504-175816.jpg | Bin 845 -> 1536 bytes .../3_3_digit3_20210524-141810.jpg | Bin 778 -> 1339 bytes .../3_3_digit7_20210406-130801.jpg | Bin 838 -> 1566 bytes .../3_3_digit7_20210525-064431.jpg | Bin 820 -> 1493 bytes .../3_3_nt7_20210626-004551.jpg | Bin 772 -> 1333 bytes .../3_3_nt7_20210628-010849.jpg | Bin 785 -> 1371 bytes .../3_3a0fe141a3070a74788f8d7a9234dd01.jpg | Bin 840 -> 1492 bytes .../3_45737d511f6b035ff210c21b766574dc.jpg | Bin 761 -> 1271 bytes .../3_5_dig5_20210629-184812.jpg | Bin 860 -> 0 bytes ziffer_sortiert_resize/3_6590.jpg | Bin 940 -> 1696 bytes .../3_70df9dabdcec0f42adca014d909d421a.jpg | Bin 760 -> 1228 bytes .../3_8e8af8f18fce9dfdc3f560597674748f.jpg | Bin 841 -> 0 bytes .../3_9_dig2_20210628-182804.jpg | Bin 790 -> 0 bytes .../3_9_dig2_20210629-143210.jpg | Bin 803 -> 0 bytes .../3_9_dig2_20210629-181211.jpg | Bin 807 -> 0 bytes .../3_9_dig2_20210629-201116.jpg | Bin 802 -> 0 bytes .../3_9_dig2_20210629-202916.jpg | Bin 797 -> 0 bytes .../3_9_dig2_20210629-213437.jpg | Bin 802 -> 0 bytes .../3_9_dig2_20210629-215437.jpg | Bin 799 -> 0 bytes .../3_D5_2020-08-08_14-38-23.jpg | Bin 808 -> 1373 bytes .../3_D8_2020-08-25_12-14-40.jpg | Bin 864 -> 1565 bytes ziffer_sortiert_resize/3_Ziffer_3_0001.jpg | Bin 884 -> 1302 bytes ziffer_sortiert_resize/3_a2.jpg | Bin 927 -> 1685 bytes ziffer_sortiert_resize/3_arbitrary.jpg | Bin 843 -> 1468 bytes .../3_arbitrary_20220227.jpg | Bin 808 -> 1467 bytes ziffer_sortiert_resize/3_b1.jpg | Bin 922 -> 1669 bytes ziffer_sortiert_resize/3_c1.jpg | Bin 916 -> 1682 bytes .../3_dig0001_20220429-180502.jpg | Bin 776 -> 1143 bytes .../3_dig1_20220629-081655.jpg | Bin 799 -> 1431 bytes .../3_dig1_20220725-210705.jpg | Bin 811 -> 1459 bytes .../3_dig2_20220204-200853.jpg | Bin 873 -> 1622 bytes .../3_dig2_20220222-225933.jpg | Bin 892 -> 1639 bytes .../3_dig2_20220629-071655.jpg | Bin 812 -> 1472 bytes .../3_dig3_20220419-110024.jpg | Bin 890 -> 1638 bytes .../3_dig3_20220419-110524.jpg | Bin 879 -> 0 bytes .../3_dig3_20220627-184801.jpg | Bin 847 -> 1551 bytes .../3_dig3_20220629-061655.jpg | Bin 770 -> 1333 bytes .../3_dig6_20220627-184801.jpg | Bin 894 -> 1681 bytes .../3_dig7_20220205-102227.jpg | Bin 921 -> 1732 bytes .../3_dig7_20220222-233532.jpg | Bin 863 -> 1547 bytes .../3_dig7_20220223-145629.jpg | Bin 878 -> 1577 bytes .../3_dig9_20220627-190234.jpg | Bin 847 -> 1536 bytes .../3_digit1_2020-04-17_17-08-54.jpg | Bin 863 -> 1593 bytes .../3_digit3_2020-04-17_18-51-09.jpg | Bin 858 -> 1568 bytes .../3_digit3_20210816-132214.jpg | Bin 834 -> 1479 bytes .../3_digit3_20210816-132705.jpg | Bin 833 -> 0 bytes .../3_e5e99faca625e4d7e57d9d78de9da18e.jpg | Bin 756 -> 1191 bytes .../3_litre2_20220312-142730.jpg | Bin 869 -> 1597 bytes .../3_litre3_20220313-193355.jpg | Bin 865 -> 1615 bytes ziffer_sortiert_resize/3_main_dig5.jpg | Bin 887 -> 1655 bytes .../3_red2_19700109-015544.jpg | Bin 827 -> 1546 bytes .../3_red2_19700109-015844.jpg | Bin 827 -> 1528 bytes .../3_waerme_5_20221030-000508.jpg | Bin 820 -> 1614 bytes .../3_waerme_5_20221103-072050.jpg | Bin 816 -> 1570 bytes .../3_waerme_6_20221103-072050.jpg | Bin 874 -> 1701 bytes .../3_warmwasser_44_20221101-182536.jpg | Bin 814 -> 1562 bytes .../3_warmwasser_55_20221030-102507.jpg | Bin 803 -> 1581 bytes .../3_warmwasser_55_20221101-183036.jpg | Bin 814 -> 1595 bytes .../3_warmwasser_66_20221103-010051.jpg | Bin 853 -> 1647 bytes ..._wassertemperatur_dec2_20221120-145223.jpg | Bin 838 -> 1566 bytes ..._wassertemperatur_dec2_20221120-150123.jpg | Bin 832 -> 0 bytes .../3_ziffer5_2019-11-05_05-03-01.jpg | Bin 886 -> 1301 bytes .../4 -1_3_20211231-090402.jpg | Bin 759 -> 1195 bytes .../4 -1_3_20211231-114401.jpg | Bin 784 -> 1247 bytes .../4 -4_3_20211231-094402.jpg | Bin 766 -> 0 bytes ziffer_sortiert_resize/4-1.jpg | Bin 839 -> 1331 bytes .../4-1_3_20211231-120401.jpg | Bin 786 -> 0 bytes ziffer_sortiert_resize/4-2.jpg | Bin 814 -> 1228 bytes ziffer_sortiert_resize/4.0_02.jpg | Bin 875 -> 1567 bytes ziffer_sortiert_resize/4.0_03.jpg | Bin 867 -> 1552 bytes ziffer_sortiert_resize/4.0_3.jpg | Bin 796 -> 1397 bytes ziffer_sortiert_resize/4.0_4.jpg | Bin 840 -> 1416 bytes .../4.0_dig1_20211008-114800.jpg | Bin 896 -> 1678 bytes .../4.0_dig1_20211011-050841.jpg | Bin 890 -> 1671 bytes .../4.0_dig3_20211019-145729.jpg | Bin 869 -> 1595 bytes .../4.0_dig5_20210924-075240.jpg | Bin 818 -> 1464 bytes ziffer_sortiert_resize/4.0_lcd.jpg | Bin 773 -> 1343 bytes .../4.0_main_dig2_20240316-092123.jpg | Bin 775 -> 1188 bytes .../4.0_main_dig3_20240314-124210.jpg | Bin 805 -> 1253 bytes ziffer_sortiert_resize/4.jpg | Bin 848 -> 1535 bytes ziffer_sortiert_resize/4_01.jpg | Bin 841 -> 1526 bytes ziffer_sortiert_resize/4_02.jpg | Bin 805 -> 1443 bytes .../4_02b8acd90d35f3ff47911dbab5bbd965.jpg | Bin 831 -> 1485 bytes ziffer_sortiert_resize/4_03.jpg | Bin 826 -> 1506 bytes .../4_0_ht6_20210627-212552.jpg | Bin 768 -> 1264 bytes .../4_0_ht6_20210627-222355.jpg | Bin 770 -> 1262 bytes .../4_0_ht6_20210627-222846.jpg | Bin 765 -> 0 bytes .../4_0bcc24719f51cc6f400af3dd3d74022d.jpg | Bin 751 -> 1260 bytes ziffer_sortiert_resize/4_1.jpg | Bin 898 -> 1445 bytes .../4_10_digit3_20210218-114313.jpg | Bin 807 -> 1373 bytes .../4_10_ht6_20210703-070449.jpg | Bin 766 -> 1294 bytes .../4_168f5388f05e057efbda67d6563b59b0.jpg | Bin 838 -> 1507 bytes ziffer_sortiert_resize/4_17595.jpg | Bin 926 -> 1646 bytes ziffer_sortiert_resize/4_1_20220211.jpg | Bin 893 -> 1615 bytes .../4_1_ht6_20210627-202210.jpg | Bin 767 -> 0 bytes .../4_1edd7ef86e53d82a66ae4a26ac98cad8.jpg | Bin 765 -> 1275 bytes ziffer_sortiert_resize/4_2.jpg | Bin 898 -> 1431 bytes .../4_20200824-205901_digit5.jpg | Bin 850 -> 1530 bytes .../4_20200910-023649_ROI5.jpg | Bin 825 -> 1491 bytes .../4_20200912-011030_ROI5.jpg | Bin 816 -> 1450 bytes ziffer_sortiert_resize/4_26142.jpg | Bin 926 -> 0 bytes ziffer_sortiert_resize/4_2_20220211.jpg | Bin 941 -> 1733 bytes ziffer_sortiert_resize/4_3.jpg | Bin 830 -> 1281 bytes ziffer_sortiert_resize/4_3403.jpg | Bin 918 -> 1636 bytes .../4_3e0816ce66b72f0405af2b9aac9f1453.jpg | Bin 758 -> 1262 bytes .../4_4_7_20210725-091009.jpg | Bin 860 -> 1553 bytes .../4_4_8_20210727-092315.jpg | Bin 884 -> 1647 bytes .../4_4_ROI2_20210605-094214a.jpg | Bin 859 -> 1657 bytes .../4_4_ROI3_20210313-202538.jpg | Bin 824 -> 1461 bytes .../4_4_ROI4_20210308-220020.jpg | Bin 822 -> 1441 bytes .../4_4_ROI4_20210308-222020.jpg | Bin 826 -> 0 bytes .../4_4_ROI6_20210222-132331.jpg | Bin 870 -> 1514 bytes ziffer_sortiert_resize/4_4_a.jpg | Bin 974 -> 1908 bytes ziffer_sortiert_resize/4_4_b.jpg | Bin 958 -> 1906 bytes .../4_4_dig5_20210629-121009.jpg | Bin 868 -> 1589 bytes .../4_4_dig5_20210629-202316.jpg | Bin 859 -> 0 bytes .../4_4_digit3_20210422-092016.jpg | Bin 876 -> 1583 bytes .../4_4_digit3_20210424-160317.jpg | Bin 880 -> 1598 bytes .../4_4_digit7_20210406-135138.jpg | Bin 829 -> 1525 bytes .../4_4_ht6_20210626-142130.jpg | Bin 782 -> 1277 bytes .../4_4_ht6_20210626-191722.jpg | Bin 781 -> 0 bytes .../4_4_nt7_20210628-091840.jpg | Bin 775 -> 1326 bytes .../4_4_nt7_20210628-201127.jpg | Bin 782 -> 1347 bytes ziffer_sortiert_resize/4_4b.jpg | Bin 829 -> 1468 bytes .../4_805e1ac0528dc20138db30bc8ad061d8.jpg | Bin 833 -> 0 bytes .../4_8b6fe84a1d464bc1205d74831ee3656c.jpg | Bin 764 -> 1271 bytes .../4_9b1c693e54d4d158b6f688cf505a356c.jpg | Bin 761 -> 1243 bytes .../4_D5_2020-08-09_08-01-04.jpg | Bin 797 -> 1352 bytes .../4_D5_2020-08-09_19-16-55.jpg | Bin 820 -> 1453 bytes .../4_D5_2020-08-20_17-24-21.jpg | Bin 803 -> 1435 bytes ziffer_sortiert_resize/4_a1.jpg | Bin 873 -> 1515 bytes ziffer_sortiert_resize/4_arbitrary.jpg | Bin 787 -> 1286 bytes .../4_arbitrary_20220227.jpg | Bin 800 -> 1413 bytes ziffer_sortiert_resize/4_b1.jpg | Bin 939 -> 1701 bytes ziffer_sortiert_resize/4_c1.jpg | Bin 826 -> 1411 bytes .../4_dig0001_20220506-100502.jpg | Bin 776 -> 1161 bytes .../4_dig0001_20220507-140502.jpg | Bin 777 -> 1178 bytes .../4_dig1_20220525-110501.jpg | Bin 811 -> 1291 bytes .../4_dig1_20220629-100156.jpg | Bin 799 -> 1401 bytes .../4_dig1_20220725-200205.jpg | Bin 798 -> 0 bytes .../4_dig2_20220629-072155.jpg | Bin 798 -> 1404 bytes .../4_dig3_20220629-031155.jpg | Bin 769 -> 1324 bytes .../4_dig5_20220204-202326.jpg | Bin 926 -> 1739 bytes .../4_dig5_20220409-050051.jpg | Bin 865 -> 1522 bytes .../4_dig5_20220409-050651.jpg | Bin 856 -> 0 bytes .../4_dig5b_19700108-000130.jpg | Bin 842 -> 1553 bytes .../4_dig6_20220205-102718.jpg | Bin 955 -> 1822 bytes .../4_dig6_20220222-170224.jpg | Bin 908 -> 1679 bytes .../4_dig6_20220627-185743.jpg | Bin 869 -> 1598 bytes .../4_dig7_20220205-120418.jpg | Bin 904 -> 1686 bytes .../4_dig8_20220627-201028.jpg | Bin 864 -> 0 bytes .../4_dig9_20220627-194613.jpg | Bin 825 -> 0 bytes .../4_digit1_2020-04-17_18-20-09.jpg | Bin 870 -> 1655 bytes .../4_digit2_2020-03-22_12-05-10.jpg | Bin 856 -> 1571 bytes .../4_digit3_2020-03-23_18-29-05.jpg | Bin 858 -> 1573 bytes .../4_digit5_2020-04-17_16-25-34.jpg | Bin 838 -> 1486 bytes ziffer_sortiert_resize/4_digit6_113213.jpg | Bin 857 -> 1581 bytes .../4_digit6_2020-03-22_11-44-09.jpg | Bin 807 -> 1404 bytes .../4_digit6_20210814-092830.jpg | Bin 794 -> 1398 bytes ziffer_sortiert_resize/4_digit7_511107.jpg | Bin 830 -> 1528 bytes .../4_ex_0_dig7_20220223-111430.jpg | Bin 934 -> 1767 bytes .../4_litre2_20220312-143100.jpg | Bin 859 -> 1567 bytes .../4_red2_19700109-004128.jpg | Bin 818 -> 1467 bytes .../4_red2_19700109-012540.jpg | Bin 817 -> 1458 bytes .../4_waerme_5_20221030-060008.jpg | Bin 797 -> 1515 bytes .../4_waerme_5_20221030-064008.jpg | Bin 812 -> 0 bytes .../4_waerme_5_20221030-081008.jpg | Bin 766 -> 0 bytes .../4_waerme_5_20221030-104007.jpg | Bin 798 -> 1527 bytes .../4_waerme_5_20221103-160549.jpg | Bin 806 -> 1584 bytes .../4_waerme_5_20221103-204048.jpg | Bin 817 -> 1580 bytes .../4_waerme_6_20221030-083508.jpg | Bin 820 -> 1550 bytes .../4_waerme_6_20221103-072550.jpg | Bin 849 -> 1641 bytes .../4_waerme_6_20221103-160549.jpg | Bin 828 -> 1571 bytes .../4_warmwasser_44_20221103-070050.jpg | Bin 775 -> 1481 bytes .../4_warmwasser_55_20221031-231038.jpg | Bin 800 -> 1542 bytes ..._wassertemperatur_dec1_20221119-182827.jpg | Bin 860 -> 1626 bytes ..._wassertemperatur_dec2_20221120-093124.jpg | Bin 828 -> 1547 bytes .../4_ziffer5_2019-11-09_13-06-31.jpg | Bin 885 -> 1371 bytes .../4_ziffer5_2019-11-10_17-54-23.jpg | Bin 872 -> 1306 bytes .../5 -5_7_20211231-064402.jpg | Bin 785 -> 1275 bytes .../5 -5_7_20211231-092401.jpg | Bin 793 -> 1297 bytes ziffer_sortiert_resize/5-1.jpg | Bin 829 -> 1345 bytes .../5-10_5_20220102-153613.jpg | Bin 776 -> 1254 bytes ziffer_sortiert_resize/5-2.jpg | Bin 815 -> 1281 bytes ziffer_sortiert_resize/5.0_01.jpg | Bin 889 -> 1644 bytes .../5.0_63154126a45afd14523d9a5af00b40c4.jpg | Bin 850 -> 1552 bytes .../5.0_dig1_20211005-205441.jpg | Bin 875 -> 1657 bytes .../5.0_dig4_20210926-214929.jpg | Bin 810 -> 1434 bytes ziffer_sortiert_resize/5.0_lcd.jpg | Bin 786 -> 1396 bytes .../5.0_main_dig2_20240316-093323.jpg | Bin 787 -> 1214 bytes .../5.0_main_dig3_20240314-172710.jpg | Bin 819 -> 1307 bytes .../5.0_main_dig4_20240316-104523.jpg | Bin 854 -> 1378 bytes ziffer_sortiert_resize/5.jpg | Bin 844 -> 1555 bytes ziffer_sortiert_resize/5_01.jpg | Bin 846 -> 1539 bytes ziffer_sortiert_resize/5_02.jpg | Bin 818 -> 1478 bytes ziffer_sortiert_resize/5_03.jpg | Bin 834 -> 1533 bytes .../5_07c9faaaf832ad0db5a4d0222e95c21e.jpg | Bin 840 -> 1540 bytes .../5_0_nt3_20210627-213043.jpg | Bin 800 -> 1398 bytes .../5_0_nt3_20210627-222355.jpg | Bin 752 -> 1304 bytes .../5_0_nt3_20210628-222251.jpg | Bin 821 -> 1471 bytes .../5_0f2eb48a7067c123e6fd1c65d6f68b6a.jpg | Bin 838 -> 0 bytes ziffer_sortiert_resize/5_1.jpg | Bin 913 -> 1508 bytes ziffer_sortiert_resize/5_14247.jpg | Bin 934 -> 1689 bytes .../5_1619417105694-digit2.jpg | Bin 808 -> 1144 bytes ziffer_sortiert_resize/5_1_20220211.jpg | Bin 872 -> 1587 bytes .../5_1c5c529db001dfdc01da497a93c5b702.jpg | Bin 765 -> 1239 bytes ziffer_sortiert_resize/5_2.jpg | Bin 869 -> 1404 bytes .../5_20200812-215759_digit3.jpg | Bin 862 -> 1585 bytes .../5_20200814-123005_digit3.jpg | Bin 848 -> 1524 bytes .../5_20200910-032519_ROI5.jpg | Bin 814 -> 1491 bytes .../5_20200910-214628_ROI4.jpg | Bin 830 -> 1508 bytes ziffer_sortiert_resize/5_2_20220211.jpg | Bin 930 -> 1725 bytes ziffer_sortiert_resize/5_3.jpg | Bin 870 -> 1467 bytes ziffer_sortiert_resize/5_31873.jpg | Bin 921 -> 1664 bytes .../5_4bbfeb6de99433e535b9669224835ba4.jpg | Bin 755 -> 1208 bytes .../5_55c00d3273106104a75995d54e2241f6.jpg | Bin 759 -> 1242 bytes .../5_5_ROI2_20210605-125021a.jpg | Bin 868 -> 1663 bytes .../5_5_ROI3_20210315-220240.jpg | Bin 818 -> 0 bytes .../5_5_ROI3_20210320-010309.jpg | Bin 804 -> 1423 bytes .../5_5_ROI3_20210320-014808.jpg | Bin 806 -> 0 bytes .../5_5_ROI4_20210418-173416.jpg | Bin 850 -> 1547 bytes .../5_5_dig5_20210628-180600.jpg | Bin 867 -> 1592 bytes .../5_5_dig5_20210628-183204.jpg | Bin 864 -> 0 bytes .../5_5_dig6_20210629-104008.jpg | Bin 869 -> 1600 bytes .../5_5_digit7_20210526-100757.jpg | Bin 805 -> 0 bytes .../5_5_ht7_20210628-132602.jpg | Bin 778 -> 1351 bytes .../5_5_nt3_20210625-173304.jpg | Bin 785 -> 1349 bytes .../5_5_nt3_20210625-175228.jpg | Bin 789 -> 0 bytes ziffer_sortiert_resize/5_5b.jpg | Bin 845 -> 1516 bytes ziffer_sortiert_resize/5_7893.jpg | Bin 958 -> 1741 bytes .../5_8ac7d9372b2aff7640a50f460a36c269.jpg | Bin 761 -> 1272 bytes ziffer_sortiert_resize/5_Ziffer_5_0119.jpg | Bin 920 -> 1390 bytes ziffer_sortiert_resize/5_arbitrary.jpg | Bin 782 -> 1260 bytes .../5_arbitrary_20220227.jpg | Bin 793 -> 1437 bytes ziffer_sortiert_resize/5_c.jpg | Bin 934 -> 1706 bytes .../5_dig0001_20220508-130502.jpg | Bin 757 -> 1156 bytes .../5_dig0001_20220513-110502.jpg | Bin 762 -> 1149 bytes .../5_dig1_20220629-132656.jpg | Bin 809 -> 1436 bytes .../5_dig1_20220725-170204.jpg | Bin 815 -> 1468 bytes .../5_dig2_20220629-140656.jpg | Bin 803 -> 1435 bytes .../5_dig3_20220629-040655.jpg | Bin 766 -> 0 bytes .../5_dig4_20220106-172117.jpg | Bin 853 -> 1581 bytes .../5_dig5_20220413-000219.jpg | Bin 879 -> 1546 bytes .../5_dig5_20220413-000819.jpg | Bin 870 -> 0 bytes .../5_dig5b_19700109-004128.jpg | Bin 861 -> 1601 bytes .../5_dig6_20220102-204954.jpg | Bin 908 -> 1659 bytes .../5_dig6_20220222-175724.jpg | Bin 891 -> 1634 bytes .../5_dig6_20220627-194613.jpg | Bin 890 -> 1644 bytes .../5_dig7_20220223-112930.jpg | Bin 915 -> 1727 bytes .../5_dig7_20220627-221142.jpg | Bin 891 -> 1641 bytes .../5_dig8_20220627-184801.jpg | Bin 888 -> 1631 bytes .../5_digit1_2020-04-17_18-41-34.jpg | Bin 858 -> 1596 bytes .../5_digit2_2020-04-17_16-48-32.jpg | Bin 883 -> 1633 bytes .../5_digit3_2020-03-23_20-18-33.jpg | Bin 899 -> 1686 bytes ziffer_sortiert_resize/5_digit6_182517.jpg | Bin 854 -> 1559 bytes .../5_digit6_20210814-133551.jpg | Bin 805 -> 1436 bytes ziffer_sortiert_resize/5_digit7_001307.jpg | Bin 829 -> 1523 bytes .../5_f3bc0618fe59a531e95344bc48977f95.jpg | Bin 787 -> 1371 bytes .../5_litre1_20220313-084257.jpg | Bin 770 -> 1352 bytes .../5_litre2_20220312-165759.jpg | Bin 869 -> 1615 bytes .../5_red3_19700109-002028.jpg | Bin 814 -> 1480 bytes .../5_waerme_1_20221031-112301.jpg | Bin 816 -> 1558 bytes .../5_waerme_1_20221103-010051.jpg | Bin 792 -> 1528 bytes .../5_waerme_6_20221101-160036.jpg | Bin 846 -> 1654 bytes .../5_warmwasser_44_20221103-162549.jpg | Bin 813 -> 1577 bytes .../5_warmwasser_66_20221030-200507.jpg | Bin 845 -> 1639 bytes ..._wassertemperatur_dec2_20221119-180127.jpg | Bin 851 -> 1549 bytes ..._wassertemperatur_dec2_20221119-182227.jpg | Bin 833 -> 1508 bytes .../5_ziffer3_2020-02-12_17-00-56.jpg | Bin 853 -> 1541 bytes .../6 -6_6_20211231-114401.jpg | Bin 795 -> 1332 bytes .../6 -6_7_20211231-094402.jpg | Bin 779 -> 1267 bytes ziffer_sortiert_resize/6-1.jpg | Bin 821 -> 0 bytes ziffer_sortiert_resize/6-2.jpg | Bin 844 -> 1358 bytes ziffer_sortiert_resize/6.0_01.jpg | Bin 886 -> 1594 bytes ziffer_sortiert_resize/6.0_02.jpg | Bin 835 -> 1354 bytes .../6.0_48f98387495b40d24cd73ff2094dcc47.jpg | Bin 764 -> 1235 bytes .../6.0_9364ddd52e174f45f93f6bd7d2d7975c.jpg | Bin 759 -> 1223 bytes .../6.0_9f61a8a51b896a0138df758e9a12bf84.jpg | Bin 777 -> 1301 bytes .../6.0_9f982a6a5da0aa997a8bca2b800d56ae.jpg | Bin 779 -> 1320 bytes .../6.0_dig5_20210923-085241.jpg | Bin 854 -> 1534 bytes .../6.0_dig5_20210923-091656.jpg | Bin 858 -> 0 bytes .../6.0_dig5_20211011-203317.jpg | Bin 883 -> 1664 bytes ziffer_sortiert_resize/6.0_lcd.jpg | Bin 792 -> 1426 bytes .../6.0_main_dig2_20240316-100323.jpg | Bin 790 -> 1223 bytes ziffer_sortiert_resize/6.jpg | Bin 840 -> 1549 bytes ziffer_sortiert_resize/6_01.jpg | Bin 849 -> 1563 bytes ziffer_sortiert_resize/6_02.jpg | Bin 843 -> 1530 bytes ziffer_sortiert_resize/6_03.jpg | Bin 817 -> 1456 bytes .../6_081c051b48abd00077bcbce05a8f8bbe.jpg | Bin 841 -> 1548 bytes .../6_0_digit4_20210629-000037.jpg | Bin 843 -> 1523 bytes .../6_0_digit4_20210629-015209.jpg | Bin 850 -> 1523 bytes .../6_0_digit7_20210629-070232.jpg | Bin 893 -> 1640 bytes ziffer_sortiert_resize/6_1.jpg | Bin 869 -> 1437 bytes ziffer_sortiert_resize/6_16277.jpg | Bin 942 -> 1700 bytes ziffer_sortiert_resize/6_1_20220211.jpg | Bin 868 -> 1584 bytes .../6_1ab182aa830c52c63aa3743a4d461175.jpg | Bin 853 -> 1533 bytes .../6_1d7323c30b86347dedd901857da530ee.jpg | Bin 855 -> 1575 bytes ziffer_sortiert_resize/6_2.jpg | Bin 926 -> 1534 bytes .../6_20200814-105815_digit3.jpg | Bin 864 -> 1589 bytes .../6_20200814-123005_digit4.jpg | Bin 853 -> 1513 bytes .../6_20200815-031637_digit3.jpg | Bin 837 -> 1499 bytes .../6_20200828-075227_digit5.jpg | Bin 876 -> 1565 bytes .../6_20200911-011403_ROI4.jpg | Bin 838 -> 1498 bytes .../6_20200912-043111_ROI4.jpg | Bin 822 -> 1487 bytes ziffer_sortiert_resize/6_27850.jpg | Bin 937 -> 1696 bytes ziffer_sortiert_resize/6_28899.jpg | Bin 940 -> 1686 bytes ziffer_sortiert_resize/6_2_20220211.jpg | Bin 848 -> 1526 bytes .../6_3e7f190045e2f793a3df4b163c0778f5.jpg | Bin 759 -> 1252 bytes .../6_6_ROI1_20210224-214618.jpg | Bin 921 -> 1593 bytes .../6_6_ROI1_20210226-064701.jpg | Bin 915 -> 1587 bytes .../6_6_ROI1_20210227-112038.jpg | Bin 915 -> 1604 bytes .../6_6_ROI2_20210605-044640a.jpg | Bin 865 -> 1646 bytes .../6_6_ROI4_20210419-101406.jpg | Bin 866 -> 1580 bytes .../6_6_ROI4_20210419-105812.jpg | Bin 870 -> 0 bytes .../6_6_dig5_20210629-081808.jpg | Bin 874 -> 1619 bytes .../6_6_dig6_20210731-012102.jpg | Bin 874 -> 1571 bytes .../6_6_digit7_20210526-101739.jpg | Bin 803 -> 1423 bytes .../6_6_nt7_20210627-015013.jpg | Bin 771 -> 1335 bytes ziffer_sortiert_resize/6_6b.jpg | Bin 835 -> 1494 bytes .../6_6f_4_digit6_20210406-111334.jpg | Bin 853 -> 1585 bytes ziffer_sortiert_resize/6_Ziffer_6_0065.jpg | Bin 923 -> 1418 bytes ziffer_sortiert_resize/6_arbitrary.jpg | Bin 829 -> 1435 bytes .../6_c47954bf8e9a3953a8ef0ec13e9446e5.jpg | Bin 791 -> 1378 bytes .../6_dig0001_20220429-160503.jpg | Bin 775 -> 1166 bytes .../6_dig0001_20220507-120503.jpg | Bin 774 -> 1185 bytes .../6_dig2_20210910-180627.jpg | Bin 868 -> 1558 bytes .../6_dig2_20220629-010155.jpg | Bin 806 -> 1465 bytes .../6_dig3_20220629-062155.jpg | Bin 773 -> 1339 bytes .../6_dig4_20220205-105624.jpg | Bin 909 -> 1719 bytes .../6_dig5_20220102-171044.jpg | Bin 932 -> 1730 bytes .../6_dig5_20220106-020809.jpg | Bin 850 -> 1587 bytes .../6_dig5_20220419-110024.jpg | Bin 872 -> 1586 bytes .../6_dig5_20220419-110524.jpg | Bin 869 -> 1568 bytes .../6_dig5b_19700109-100349.jpg | Bin 849 -> 1569 bytes .../6_dig5b_19700109-105449.jpg | Bin 852 -> 0 bytes .../6_dig6_20220102-215020.jpg | Bin 905 -> 0 bytes .../6_dig6_20220106-071435.jpg | Bin 891 -> 1664 bytes .../6_dig6_20220106-181929.jpg | Bin 888 -> 1652 bytes .../6_dig6_20220423-040542.jpg | Bin 870 -> 1562 bytes .../6_dig7_20220205-124306.jpg | Bin 917 -> 1722 bytes .../6_dig7_20220627-193631.jpg | Bin 911 -> 1695 bytes .../6_dig8_20220627-193140.jpg | Bin 882 -> 1637 bytes .../6_dig9_20220627-225521.jpg | Bin 846 -> 1537 bytes .../6_digit2_2020-03-23_19-58-14.jpg | Bin 908 -> 1698 bytes .../6_digit2_2020-04-17_17-04-52.jpg | Bin 882 -> 1649 bytes .../6_digit3_2020-04-17_14-36-04.jpg | Bin 854 -> 1548 bytes .../6_digit4_2020-03-23_20-36-07.jpg | Bin 867 -> 1586 bytes .../6_digit6_2020-04-17_15-19-55.jpg | Bin 821 -> 1438 bytes .../6_digit7_20210816-035447.jpg | Bin 819 -> 1455 bytes .../6_ex_0_dig7_20220223-114930.jpg | Bin 931 -> 1741 bytes .../6_ex_0_dig7_20220223-135545.jpg | Bin 940 -> 1780 bytes .../6_kuehlung_11_20221031-230538.jpg | Bin 777 -> 1472 bytes .../6_litre1_20220313-085327.jpg | Bin 775 -> 1343 bytes .../6_litre2_20220312-185659.jpg | Bin 866 -> 1608 bytes .../6_red2_19700108-000130.jpg | Bin 830 -> 1533 bytes .../6_waerme_6_20221103-162549.jpg | Bin 831 -> 1587 bytes .../6_warmwasser_22_20221030-200507.jpg | Bin 788 -> 1503 bytes .../6_warmwasser_55_20221030-082508.jpg | Bin 780 -> 1480 bytes .../6_warmwasser_66_20221101-000038.jpg | Bin 839 -> 1641 bytes ..._wassertemperatur_dec2_20221119-182827.jpg | Bin 843 -> 1520 bytes ..._wassertemperatur_dec2_20221119-183727.jpg | Bin 840 -> 0 bytes .../6_ziffer5_2019-11-16_15-26-26.jpg | Bin 884 -> 1335 bytes .../6_ziffer5_2019-11-17_14-25-03.jpg | Bin 901 -> 1391 bytes .../7 -1_6_20211231-120401.jpg | Bin 790 -> 1301 bytes .../7 -7_7_20211231-090402.jpg | Bin 799 -> 1346 bytes ziffer_sortiert_resize/7-1.jpg | Bin 805 -> 1217 bytes .../7-1_6_20211231-120401.jpg | Bin 790 -> 0 bytes ziffer_sortiert_resize/7-2.jpg | Bin 820 -> 1277 bytes ziffer_sortiert_resize/7.0_1.jpg | Bin 808 -> 1480 bytes ziffer_sortiert_resize/7.0_2.jpg | Bin 819 -> 1390 bytes ziffer_sortiert_resize/7.0_20220119_1.jpg | Bin 888 -> 1646 bytes ziffer_sortiert_resize/7.0_20220119_2.jpg | Bin 858 -> 1538 bytes ziffer_sortiert_resize/7.0_3.jpg | Bin 903 -> 1605 bytes .../7.0_dig1_20211010-213243.jpg | Bin 886 -> 1633 bytes .../7.0_dig3_20211005-134251.jpg | Bin 855 -> 1590 bytes .../7.0_dig3_20211005-135251.jpg | Bin 852 -> 0 bytes .../7.0_dig5_20210923-092147.jpg | Bin 826 -> 0 bytes ziffer_sortiert_resize/7.0_github417.jpg | Bin 789 -> 1147 bytes ziffer_sortiert_resize/7.0_lcd.jpg | Bin 751 -> 1316 bytes .../7.0_main_dig2_20240316-102123.jpg | Bin 786 -> 1205 bytes .../7.0_main_dig3_20240315-173925.jpg | Bin 815 -> 1258 bytes ziffer_sortiert_resize/7.jpg | Bin 821 -> 1478 bytes ziffer_sortiert_resize/7_01.jpg | Bin 837 -> 1484 bytes ziffer_sortiert_resize/7_02.jpg | Bin 815 -> 1467 bytes ziffer_sortiert_resize/7_03.jpg | Bin 814 -> 1457 bytes .../7_03c6deeaefba2091d175d36ffbfd5290.jpg | Bin 843 -> 1543 bytes .../7_0_dig5_20210629-092608.jpg | Bin 862 -> 1559 bytes .../7_0_dig5_20210629-093808.jpg | Bin 862 -> 0 bytes .../7_0_dig5_20210629-095608.jpg | Bin 859 -> 0 bytes .../7_0_dig5_20210629-130409.jpg | Bin 864 -> 0 bytes .../7_0_dig6_20210629-193212.jpg | Bin 863 -> 1576 bytes .../7_0a4bcb8abc4c0807316206127e0b6401.jpg | Bin 776 -> 1302 bytes .../7_0ec7c0592a08776a04a50b9b6231ec06.jpg | Bin 842 -> 1511 bytes ziffer_sortiert_resize/7_1.jpg | Bin 826 -> 1440 bytes .../7_10_ROI5_20210218-115255.jpg | Bin 806 -> 1389 bytes .../7_10_ROI6_20210218-113822.jpg | Bin 865 -> 1487 bytes .../7_10_ht6_20210703-133250.jpg | Bin 779 -> 1338 bytes .../7_10e7c4f283a7a1b58441be5d4b5ec43d.jpg | Bin 854 -> 0 bytes ziffer_sortiert_resize/7_17212.jpg | Bin 917 -> 1637 bytes ziffer_sortiert_resize/7_1_20220211.jpg | Bin 826 -> 0 bytes .../7_1_dig4_20210628-181400.jpg | Bin 850 -> 1521 bytes .../7_1_dig4_20210628-184404.jpg | Bin 850 -> 0 bytes .../7_1_nt6_20210626-063503.jpg | Bin 757 -> 1250 bytes ziffer_sortiert_resize/7_2.jpg | Bin 815 -> 1238 bytes .../7_20200814-123456_digit5.jpg | Bin 859 -> 1514 bytes .../7_20200910-131317_digit2.jpg | Bin 783 -> 1318 bytes .../7_20200910-161244_ROI5.jpg | Bin 787 -> 1372 bytes .../7_20370a4c517f7b7b41f4e4421ded2662.jpg | Bin 751 -> 1220 bytes ziffer_sortiert_resize/7_2_20220211.jpg | Bin 829 -> 0 bytes ziffer_sortiert_resize/7_32449.jpg | Bin 931 -> 1683 bytes ziffer_sortiert_resize/7_4173.jpg | Bin 920 -> 1638 bytes .../7_6bb177edc085b233a5dcb97d7facc2a9.jpg | Bin 748 -> 1240 bytes ziffer_sortiert_resize/7_7.jpg | Bin 829 -> 1469 bytes .../7_7_ROI1_20210605-094214.jpg | Bin 803 -> 1500 bytes .../7_7_ROI4_20210312-230358.jpg | Bin 815 -> 1466 bytes .../7_7_ROI4_20210312-235358.jpg | Bin 813 -> 0 bytes .../7_7_ROI4_20210425-132406.jpg | Bin 855 -> 1534 bytes ziffer_sortiert_resize/7_7_a.jpg | Bin 942 -> 1837 bytes ziffer_sortiert_resize/7_7_b.jpg | Bin 923 -> 1771 bytes .../7_7_dig4_20210628-180600.jpg | Bin 850 -> 0 bytes .../7_7_dig4_20210628-183604.jpg | Bin 848 -> 0 bytes .../7_7_dig4_20210628-223605.jpg | Bin 846 -> 0 bytes .../7_7_dig5_20210730-182850.jpg | Bin 879 -> 0 bytes .../7_7_digit4_20210414-180055.jpg | Bin 837 -> 1519 bytes .../7_7_digit5_20210412-214553.jpg | Bin 906 -> 1643 bytes .../7_7_digit6_20210505-060235.jpg | Bin 851 -> 1565 bytes .../7_7_digit6_20210527-193327.jpg | Bin 826 -> 1424 bytes .../7_7_ht6_20210629-092411.jpg | Bin 820 -> 1461 bytes .../7_7_nt6_20210625-172323.jpg | Bin 756 -> 1214 bytes .../7_7_nt6_20210626-043348.jpg | Bin 761 -> 0 bytes ziffer_sortiert_resize/7_7b.jpg | Bin 831 -> 1488 bytes .../7_D5_2020-08-13_10-39-35.jpg | Bin 829 -> 1485 bytes .../7_D7_2020-08-08_10-11-26.jpg | Bin 775 -> 1347 bytes .../7_ROI4_20210423-231337.jpg | Bin 871 -> 1578 bytes ziffer_sortiert_resize/7_arbitrary.jpg | Bin 794 -> 1313 bytes .../7_arbitrary_20220227.jpg | Bin 804 -> 1442 bytes .../7_b3448b860a7529f3690e05ff46e214d7.jpg | Bin 748 -> 1202 bytes .../7_dig0001_20220429-01051651187102.jpg | Bin 773 -> 1165 bytes .../7_dig0001_20220502-200502.jpg | Bin 774 -> 1163 bytes .../7_dig0001_20220507-230502.jpg | Bin 787 -> 1203 bytes .../7_dig1_20220610-160502.jpg | Bin 821 -> 1290 bytes .../7_dig2_20220627-184801.jpg | Bin 786 -> 1408 bytes .../7_dig2_20220629-002031.jpg | Bin 785 -> 1368 bytes .../7_dig3_20220629-002654.jpg | Bin 761 -> 1299 bytes .../7_dig4_20220215-230214.jpg | Bin 893 -> 1636 bytes .../7_dig5_20220106-034509 (2).jpg | Bin 825 -> 1478 bytes .../7_dig5_20220106-034509.jpg | Bin 825 -> 0 bytes .../7_dig5_20220205-120418.jpg | Bin 878 -> 1653 bytes .../7_dig6_20220106-171136 (2).jpg | Bin 872 -> 0 bytes .../7_dig6_20220106-171136.jpg | Bin 872 -> 0 bytes .../7_dig6_20220222-205933.jpg | Bin 863 -> 1532 bytes .../7_dig6_20220222-215933.jpg | Bin 856 -> 0 bytes .../7_dig7_20220205-105133.jpg | Bin 912 -> 1699 bytes .../7_dig8_20220627-222615.jpg | Bin 848 -> 0 bytes .../7_dig9_20220627-191707.jpg | Bin 811 -> 0 bytes .../7_digit1_2020-04-17_19-10-48.jpg | Bin 863 -> 1611 bytes .../7_digit2_2020-03-23_18-23-21.jpg | Bin 863 -> 1570 bytes .../7_digit3_2020-04-17_17-15-08.jpg | Bin 834 -> 1516 bytes .../7_digit6_20210808-021031.jpg | Bin 807 -> 1428 bytes ziffer_sortiert_resize/7_digit7_073420.jpg | Bin 827 -> 0 bytes .../7_kuehlung_33_20221101-185536.jpg | Bin 787 -> 1457 bytes .../7_litre2_20220313-183055.jpg | Bin 858 -> 1564 bytes .../7_red2_19700109-014943.jpg | Bin 806 -> 1485 bytes .../7_red2_19700109-021644.jpg | Bin 811 -> 1459 bytes .../7_waerme_6_20221101-182536.jpg | Bin 843 -> 1641 bytes .../7_warmwasser_33_20221030-105507.jpg | Bin 755 -> 1385 bytes .../7_warmwasser_33_20221031-110301.jpg | Bin 779 -> 1471 bytes .../7_warmwasser_66_20221101-185536.jpg | Bin 837 -> 1623 bytes ..._wassertemperatur_dec2_20221119-184926.jpg | Bin 802 -> 1418 bytes ..._wassertemperatur_dec2_20221119-185526.jpg | Bin 794 -> 1404 bytes ziffer_sortiert_resize/7_weis_2_20220227.jpg | Bin 848 -> 1579 bytes .../7_ziffer5_2020-03-23_21-24-17.jpg | Bin 816 -> 1447 bytes .../8 -0_7_20211231-114401.jpg | Bin 819 -> 1382 bytes .../8 -8_7_20211231-080400.jpg | Bin 802 -> 1323 bytes .../8- 8_6_20211231-082402.jpg | Bin 791 -> 1295 bytes ziffer_sortiert_resize/8-1.jpg | Bin 844 -> 1336 bytes ziffer_sortiert_resize/8-2.jpg | Bin 825 -> 1296 bytes ziffer_sortiert_resize/8.0_01.jpg | Bin 876 -> 1455 bytes .../8.0_1f8702dc65aa4984ce36a04e6c9e0008.jpg | Bin 765 -> 1213 bytes .../8.0_dig5_20211016-144530.jpg | Bin 878 -> 1648 bytes ziffer_sortiert_resize/8.0_github417.jpg | Bin 821 -> 1215 bytes ziffer_sortiert_resize/8.0_github417_2.jpg | Bin 824 -> 1204 bytes ziffer_sortiert_resize/8.0_lcd.jpg | Bin 812 -> 1455 bytes .../8.0_main_dig2_20240316-103923.jpg | Bin 788 -> 1210 bytes .../8.0_main_dig3_20240316-104823.jpg | Bin 817 -> 1304 bytes .../8.0_main_dig4_20240315-094209.jpg | Bin 889 -> 1451 bytes ziffer_sortiert_resize/8.0_v2_github417.jpg | Bin 814 -> 1228 bytes ziffer_sortiert_resize/8.0_v3_github417.jpg | Bin 832 -> 1289 bytes ziffer_sortiert_resize/8.jpg | Bin 839 -> 1557 bytes ziffer_sortiert_resize/8_01.jpg | Bin 852 -> 1539 bytes ziffer_sortiert_resize/8_02.jpg | Bin 828 -> 1492 bytes .../8_02e6ff33efade27d1911e4467f300b0d.jpg | Bin 848 -> 1544 bytes ziffer_sortiert_resize/8_03.jpg | Bin 837 -> 1531 bytes .../8_036867ff8acfeb4b2fa31263f48902ed.jpg | Bin 851 -> 1553 bytes .../8_0_digit2_20210607-183202.jpg | Bin 898 -> 1625 bytes .../8_0_ht6_20210629-201411.jpg | Bin 831 -> 1505 bytes .../8_0a802c7f158b7d8adf03f0091fa61461.jpg | Bin 797 -> 1373 bytes ziffer_sortiert_resize/8_1.jpg | Bin 878 -> 0 bytes .../8_10_ROI6_20210218-114804.jpg | Bin 860 -> 1519 bytes ziffer_sortiert_resize/8_1588843992390-8.jpg | Bin 820 -> 1434 bytes .../8_1588866618178-ziffer5.jpg | Bin 795 -> 1390 bytes .../8_17fa3440a75deebb048de88046354614.jpg | Bin 845 -> 1539 bytes ziffer_sortiert_resize/8_1_20220211.jpg | Bin 838 -> 1494 bytes ziffer_sortiert_resize/8_2.jpg | Bin 883 -> 1438 bytes .../8_20200816-094909_digit5.jpg | Bin 886 -> 0 bytes .../8_20200821-102651_digit3.jpg | Bin 850 -> 1504 bytes .../8_20200912-101936_ROI3.jpg | Bin 825 -> 1471 bytes ziffer_sortiert_resize/8_23783.jpg | Bin 942 -> 1698 bytes ziffer_sortiert_resize/8_27100.jpg | Bin 944 -> 1694 bytes ziffer_sortiert_resize/8_2_20220211.jpg | Bin 833 -> 0 bytes ziffer_sortiert_resize/8_3.jpg | Bin 870 -> 1399 bytes .../8_3_digit6_20210629-124201.jpg | Bin 850 -> 1549 bytes .../8_3_digit7_20210629-094726.jpg | Bin 894 -> 1628 bytes .../8_422685ceca785725c95f8468483c0a36.jpg | Bin 791 -> 1351 bytes ziffer_sortiert_resize/8_4806.jpg | Bin 911 -> 1632 bytes .../8_62e994abc530087ac89d0e46207b3ca6.jpg | Bin 772 -> 1302 bytes .../8_8_ROI1_20210604-120641a.jpg | Bin 882 -> 1695 bytes .../8_8_ROI4_20210427-090127.jpg | Bin 832 -> 1511 bytes .../8_8_dig1_20210628-180600.jpg | Bin 774 -> 1314 bytes .../8_8_dig1_20210628-183404.jpg | Bin 768 -> 0 bytes .../8_8_dig4_20210730-182850.jpg | Bin 852 -> 1532 bytes .../8_8_ht6_20210629-164042.jpg | Bin 835 -> 1518 bytes ziffer_sortiert_resize/8_8b.jpg | Bin 839 -> 1487 bytes ziffer_sortiert_resize/8_Ziffer_8_0001.jpg | Bin 909 -> 1338 bytes ziffer_sortiert_resize/8_Ziffer_8_0141.jpg | Bin 911 -> 1376 bytes ziffer_sortiert_resize/8_Ziffer_8_0147.jpg | Bin 916 -> 1393 bytes ziffer_sortiert_resize/8_a1.jpg | Bin 919 -> 1642 bytes ziffer_sortiert_resize/8_a2.jpg | Bin 891 -> 1594 bytes .../8_ab66368bebcb7a1968836fc506548c6b.jpg | Bin 862 -> 1615 bytes ziffer_sortiert_resize/8_arbitrary.jpg | Bin 842 -> 1462 bytes .../8_dig0001_20220503-140502.jpg | Bin 779 -> 1185 bytes .../8_dig0001_20220508-080502.jpg | Bin 779 -> 1155 bytes .../8_dig1_20220612-210501.jpg | Bin 823 -> 1290 bytes .../8_dig2_20220629-001031.jpg | Bin 816 -> 1479 bytes .../8_dig3_20220629-012155.jpg | Bin 778 -> 1372 bytes .../8_dig4_20220108-203045.jpg | Bin 876 -> 1656 bytes .../8_dig4_20220108-203536.jpg | Bin 871 -> 0 bytes .../8_dig4_20220108-204027.jpg | Bin 875 -> 0 bytes .../8_dig4_20220328-000012.jpg | Bin 902 -> 1666 bytes .../8_dig4_20220419-110524.jpg | Bin 884 -> 1645 bytes .../8_dig5_20220106-052235.jpg | Bin 863 -> 1597 bytes .../8_dig5_20220106-060123 (2).jpg | Bin 855 -> 0 bytes .../8_dig5_20220222-175724.jpg | Bin 902 -> 1679 bytes .../8_dig6_20220106-014845.jpg | Bin 891 -> 1689 bytes .../8_dig6_20220205-125739.jpg | Bin 956 -> 1844 bytes .../8_dig6_20220223-025932.jpg | Bin 884 -> 1620 bytes .../8_dig6_20220627-221633.jpg | Bin 906 -> 1707 bytes .../8_dig7_20220205-103700.jpg | Bin 905 -> 1691 bytes .../8_dig7_20220627-184801.jpg | Bin 926 -> 0 bytes .../8_dig9_20220627-222124.jpg | Bin 860 -> 1592 bytes .../8_digit2_2020-04-17_17-46-56.jpg | Bin 878 -> 1625 bytes .../8_digit3_2020-04-17_17-52-13.jpg | Bin 867 -> 1562 bytes ziffer_sortiert_resize/8_digit7_221113.jpg | Bin 830 -> 1541 bytes .../8_kuehlung_22_20221030-065008.jpg | Bin 799 -> 1575 bytes .../8_kuehlung_22_20221030-205507.jpg | Bin 786 -> 0 bytes .../8_kuehlung_22_20221103-072050.jpg | Bin 810 -> 0 bytes .../8_litre2_20220312-192459.jpg | Bin 868 -> 1590 bytes .../8_red2_19700109-100649.jpg | Bin 823 -> 1514 bytes .../8_waerme_4_20221030-082008.jpg | Bin 795 -> 1523 bytes .../8_waerme_4_20221031-110801.jpg | Bin 775 -> 1464 bytes .../8_waerme_6_20221101-205036.jpg | Bin 855 -> 1654 bytes .../8_waerme_6_20221103-200049.jpg | Bin 871 -> 1686 bytes .../8_waerme_6_20221103-200548.jpg | Bin 864 -> 1692 bytes .../8_warmwasser_55_20221103-160049.jpg | Bin 807 -> 1576 bytes ..._wassertemperatur_dec2_20221119-185826.jpg | Bin 860 -> 1577 bytes ..._wassertemperatur_dec2_20221119-195826.jpg | Bin 864 -> 0 bytes .../8_ziffer4_2019-10-13_05-40-04.jpg | Bin 912 -> 1448 bytes .../8_ziffer4_2019-10-31_21-52-34.jpg | Bin 896 -> 1381 bytes .../8_ziffer4_2019-11-01_06-37-35.jpg | Bin 898 -> 0 bytes .../9 - 7_7_20211231-112401.jpg | Bin 823 -> 1387 bytes .../9 -4_6_20211231-090402.jpg | Bin 773 -> 1275 bytes .../9 -7_7_20211231-110401.jpg | Bin 814 -> 1362 bytes ziffer_sortiert_resize/9-1.jpg | Bin 861 -> 1418 bytes ziffer_sortiert_resize/9.0_01.jpg | Bin 811 -> 1411 bytes ziffer_sortiert_resize/9.0_02.jpg | Bin 891 -> 1608 bytes ziffer_sortiert_resize/9.0_03.jpg | Bin 810 -> 1394 bytes .../9.0_dig3_20211009-043805.jpg | Bin 884 -> 1634 bytes .../9.0_dig3_20211009-182323.jpg | Bin 890 -> 1671 bytes .../9.0_dig5_20210926-143749.jpg | Bin 831 -> 0 bytes ziffer_sortiert_resize/9.0_github417.jpg | Bin 822 -> 1263 bytes ziffer_sortiert_resize/9.0_lcd.jpg | Bin 789 -> 1396 bytes .../9.0_main_dig2_20240314-190210.jpg | Bin 797 -> 1240 bytes ziffer_sortiert_resize/9.0_v2_github417.jpg | Bin 827 -> 1270 bytes ziffer_sortiert_resize/9.jpg | Bin 840 -> 1551 bytes ziffer_sortiert_resize/9_01.jpg | Bin 825 -> 1500 bytes ziffer_sortiert_resize/9_02.jpg | Bin 844 -> 1548 bytes ziffer_sortiert_resize/9_03.jpg | Bin 839 -> 1525 bytes .../9_0_digit6_20210629-104047.jpg | Bin 839 -> 1536 bytes .../9_0_ht3_20210626-094253.jpg | Bin 828 -> 1436 bytes .../9_0_ht3_20210629-071741.jpg | Bin 857 -> 0 bytes .../9_0_ht3_20210703-024255.jpg | Bin 786 -> 1390 bytes .../9_0_ht3_20210704-074629.jpg | Bin 843 -> 1508 bytes ziffer_sortiert_resize/9_1.jpg | Bin 897 -> 1476 bytes ziffer_sortiert_resize/9_10943.jpg | Bin 926 -> 1674 bytes .../9_10_ROI6_20210218-110048.jpg | Bin 865 -> 1535 bytes ziffer_sortiert_resize/9_11.jpg | Bin 921 -> 1698 bytes ziffer_sortiert_resize/9_1_20220211.jpg | Bin 842 -> 1485 bytes ziffer_sortiert_resize/9_2.jpg | Bin 878 -> 1404 bytes .../9_20200911-180442_ROI4.jpg | Bin 833 -> 1499 bytes ziffer_sortiert_resize/9_21.jpg | Bin 945 -> 1780 bytes ziffer_sortiert_resize/9_2497.jpg | Bin 938 -> 1654 bytes ziffer_sortiert_resize/9_25057.jpg | Bin 923 -> 0 bytes ziffer_sortiert_resize/9_2_20220211.jpg | Bin 843 -> 0 bytes .../9_2_digit7_20210629-113858.jpg | Bin 887 -> 1630 bytes ziffer_sortiert_resize/9_3.jpg | Bin 880 -> 1436 bytes ziffer_sortiert_resize/9_31.jpg | Bin 907 -> 1657 bytes .../9_3_ht7_20210705-164840.jpg | Bin 845 -> 1574 bytes .../9_3aca3fc134a5138ead78c1e134c53303.jpg | Bin 765 -> 1240 bytes .../9_3ccbfd7631f4be247a6054095a363190.jpg | Bin 771 -> 1283 bytes ziffer_sortiert_resize/9_4.jpg | Bin 909 -> 1706 bytes ziffer_sortiert_resize/9_41.jpg | Bin 909 -> 0 bytes .../9_67d631adaa69409a905452b160d3af63.jpg | Bin 872 -> 1577 bytes .../9_7d532dfd40fe36397af4d7dd721e569b.jpg | Bin 763 -> 1273 bytes .../9_8_ht3_20210625-211611.jpg | Bin 822 -> 0 bytes ziffer_sortiert_resize/9_9.jpg | Bin 849 -> 1506 bytes .../9_90a4da5297024cd6a560acf990a3184f.jpg | Bin 759 -> 1189 bytes .../9_9_8_20210726-190044.jpg | Bin 886 -> 1655 bytes .../9_9_ROI2_20210604-160153a.jpg | Bin 895 -> 1734 bytes .../9_9_ROI4_20210501-210646.jpg | Bin 845 -> 1525 bytes ziffer_sortiert_resize/9_9_a.jpg | Bin 970 -> 1921 bytes ziffer_sortiert_resize/9_9_black.jpg | Bin 895 -> 1670 bytes .../9_9_ht3_20210625-172813.jpg | Bin 810 -> 0 bytes .../9_9_ht3_20210626-085542.jpg | Bin 818 -> 0 bytes .../9_9_ht3_20210626-171115.jpg | Bin 817 -> 0 bytes .../9_9_ht3_20210629-053102.jpg | Bin 856 -> 0 bytes .../9_9_nt6_20210629-181251.jpg | Bin 814 -> 1421 bytes .../9_9bd464f31d1e218c31da1efb97e662c9.jpg | Bin 853 -> 1558 bytes .../9_9f_7_digit7_20210406-113849.jpg | Bin 841 -> 1555 bytes .../9_D8_2020-08-20_11-32-19.jpg | Bin 813 -> 1421 bytes .../9_a5e4d0b58fc45ebdb657e903ea7c02e2.jpg | Bin 759 -> 1218 bytes ziffer_sortiert_resize/9_arbitrary.jpg | Bin 831 -> 1410 bytes .../9_c33d078f5bdf3f8511f53d7bbb847249.jpg | Bin 862 -> 0 bytes .../9_dig0001_20220503-160502.jpg | Bin 792 -> 1212 bytes .../9_dig1_20220514-190501.jpg | Bin 829 -> 1298 bytes .../9_dig2_20220629-081155.jpg | Bin 822 -> 1492 bytes .../9_dig3_20220103-105110.jpg | Bin 875 -> 1641 bytes .../9_dig3_20220629-002031.jpg | Bin 775 -> 1346 bytes .../9_dig4_19700109-003828.jpg | Bin 851 -> 1559 bytes .../9_dig4_19700109-004128.jpg | Bin 856 -> 0 bytes .../9_dig4_20220109-120240.jpg | Bin 882 -> 1668 bytes .../9_dig4_20220109-120732.jpg | Bin 898 -> 1714 bytes .../9_dig4_20220109-121223.jpg | Bin 890 -> 0 bytes .../9_dig5_20220106-075323.jpg | Bin 857 -> 1604 bytes .../9_dig5_20220310-020247.jpg | Bin 890 -> 1583 bytes .../9_dig5_20220310-020847.jpg | Bin 873 -> 0 bytes .../9_dig6_20220106-015827.jpg | Bin 897 -> 1675 bytes .../9_dig6_20220106-050802.jpg | Bin 899 -> 1674 bytes .../9_dig7_20220205-104151.jpg | Bin 926 -> 1737 bytes .../9_dig7_20220627-185252.jpg | Bin 916 -> 1706 bytes .../9_dig8_20220205-120418.jpg | Bin 866 -> 1620 bytes .../9_dig8_20220627-185252.jpg | Bin 896 -> 0 bytes .../9_dig9_20220627-190725.jpg | Bin 852 -> 1560 bytes .../9_digit3_2020-03-23_20-46-42.jpg | Bin 916 -> 1720 bytes .../9_digit4_2020-03-23_20-31-53.jpg | Bin 876 -> 1630 bytes .../9_ex_0_dig5_20220223-123507.jpg | Bin 908 -> 1680 bytes .../9_litre2_20220312-060001.jpg | Bin 867 -> 1588 bytes .../9_red2_19700109-023142.jpg | Bin 811 -> 1500 bytes .../9_red3_19700109-022542.jpg | Bin 800 -> 1453 bytes .../9_waerme_4_20221103-010051.jpg | Bin 795 -> 1515 bytes .../9_waerme_4_20221103-072050.jpg | Bin 797 -> 1508 bytes .../9_waerme_4_20221103-160549.jpg | Bin 797 -> 1508 bytes .../9_waerme_4_20221103-161049.jpg | Bin 775 -> 1439 bytes .../9_waerme_5_20221101-165536.jpg | Bin 794 -> 1521 bytes .../9_waerme_5_20221101-210036.jpg | Bin 786 -> 0 bytes .../9_waerme_6_20221103-204048.jpg | Bin 854 -> 1643 bytes .../9_warmwasser_66_20221101-160536.jpg | Bin 853 -> 1653 bytes .../9_warmwasser_66_20221103-160049.jpg | Bin 844 -> 1629 bytes ..._wassertemperatur_dec2_20221120-131924.jpg | Bin 868 -> 1629 bytes ..._wassertemperatur_dec2_20221120-132224.jpg | Bin 868 -> 0 bytes .../9_ziffer4_2019-11-24_08-22-52.jpg | Bin 896 -> 1373 bytes .../N_litre1_20220312-061401.jpg | Bin 773 -> 1352 bytes .../NaN_0_ROI4_20210503-220155.jpg | Bin 865 -> 1605 bytes .../NaN_0_ROI4_20210504-050351.jpg | Bin 838 -> 1532 bytes .../NaN_0_dig5_20210629-081008.jpg | Bin 881 -> 1628 bytes .../NaN_0_dig5_20210629-142810.jpg | Bin 854 -> 1573 bytes .../NaN_0_ht6_20210628-182853.jpg | Bin 777 -> 1319 bytes .../NaN_0_ht6_20210628-220327.jpg | Bin 840 -> 1521 bytes .../NaN_0_ht6_20210629-071741.jpg | Bin 841 -> 1519 bytes .../NaN_0_ht7_20210626-094253.jpg | Bin 774 -> 1319 bytes .../NaN_0_ht7_20210628-183344.jpg | Bin 787 -> 1377 bytes .../NaN_0_ht7_20210629-071741.jpg | Bin 803 -> 1438 bytes .../NaN_0_nt7_20210627-222219.jpg | Bin 790 -> 1404 bytes .../NaN_0_nt7_20210627-222846.jpg | Bin 791 -> 0 bytes .../NaN_0_nt7_20210628-220327.jpg | Bin 798 -> 1411 bytes .../NaN_0_nt7_20210628-222251.jpg | Bin 789 -> 1402 bytes .../NaN_0_nt7_20210629-072311.jpg | Bin 788 -> 1431 bytes ziffer_sortiert_resize/NaN_0b_red.jpg | Bin 900 -> 1688 bytes ziffer_sortiert_resize/NaN_10412.jpg | Bin 935 -> 1669 bytes .../NaN_10_ROI2_20210225-111350.jpg | Bin 883 -> 1546 bytes .../NaN_10_ROI2_20210225-114748.jpg | Bin 876 -> 0 bytes .../NaN_10_ROI2_20210225-150249.jpg | Bin 871 -> 1522 bytes .../NaN_10_ROI2_20210225-152704.jpg | Bin 880 -> 1523 bytes .../NaN_10_ROI6_20210218-120237.jpg | Bin 871 -> 1518 bytes .../NaN_10_dec_20210730-180514.jpg | Bin 903 -> 1677 bytes .../NaN_10_digit7_20210406-132818.jpg | Bin 840 -> 1568 bytes .../NaN_10_digit8_20210406-115520.jpg | Bin 850 -> 1578 bytes .../NaN_10_digit8_20210406-130310.jpg | Bin 846 -> 1561 bytes .../NaN_10_digit8_20210406-160257.jpg | Bin 852 -> 0 bytes .../NaN_10_ht6_20210629-015737.jpg | Bin 843 -> 0 bytes ziffer_sortiert_resize/NaN_18198.jpg | Bin 906 -> 1625 bytes .../NaN_1_dig4_20210727-204545.jpg | Bin 779 -> 1300 bytes .../NaN_1_dig5_20210712-072502.jpg | Bin 767 -> 1267 bytes .../NaN_1_dig5_20210716-155438.jpg | Bin 736 -> 1177 bytes .../NaN_1_dig5_20210727-204545.jpg | Bin 794 -> 1329 bytes .../NaN_1_digit2_20210712-072502.jpg | Bin 754 -> 1304 bytes .../NaN_1_digit2_20210712-170114.jpg | Bin 828 -> 1403 bytes .../NaN_1_digit2_20210722-003847.jpg | Bin 770 -> 1271 bytes .../NaN_1_digit3_20210712-072502.jpg | Bin 763 -> 1320 bytes .../NaN_1_ht7_20210626-105746.jpg | Bin 768 -> 1317 bytes ziffer_sortiert_resize/NaN_1b_red.jpg | Bin 913 -> 1757 bytes .../NaN_20200813-230750_digit3.jpg | Bin 887 -> 1652 bytes .../NaN_20200814-004435_digit3.jpg | Bin 884 -> 0 bytes .../NaN_20200814-015636_digit3.jpg | Bin 883 -> 0 bytes .../NaN_20200814-034016_digit3.jpg | Bin 881 -> 0 bytes .../NaN_20200814-041826_digit3.jpg | Bin 882 -> 1614 bytes .../NaN_20200814-055723_digit3.jpg | Bin 882 -> 1611 bytes .../NaN_20200814-061733_digit3.jpg | Bin 885 -> 1634 bytes .../NaN_20200814-062224_digit3.jpg | Bin 879 -> 0 bytes .../NaN_20200814-063206_digit3.jpg | Bin 881 -> 0 bytes .../NaN_20200814-072954_digit3.jpg | Bin 891 -> 1658 bytes .../NaN_20200814-083216_digit3.jpg | Bin 883 -> 1616 bytes .../NaN_20200816-092136_digit3.jpg | Bin 872 -> 1555 bytes .../NaN_20200816-093609_digit3.jpg | Bin 862 -> 1522 bytes .../NaN_20200816-105836_digit3.jpg | Bin 870 -> 1540 bytes .../NaN_20200820-181642_digit3.jpg | Bin 890 -> 1587 bytes .../NaN_20200910-003534_ROI5.jpg | Bin 810 -> 1445 bytes .../NaN_20200910-012404_ROI5.jpg | Bin 822 -> 1490 bytes .../NaN_20200910-030555_ROI5.jpg | Bin 836 -> 1507 bytes .../NaN_20200910-034443_ROI5.jpg | Bin 815 -> 1484 bytes .../NaN_20200910-065522_ROI5.jpg | Bin 833 -> 1502 bytes .../NaN_20200910-081017_ROI5.jpg | Bin 821 -> 1489 bytes .../NaN_20200910-153847_ROI5.jpg | Bin 807 -> 1417 bytes .../NaN_20200911-083008_ROI5.jpg | Bin 836 -> 1507 bytes .../NaN_20200911-091347_ROI5.jpg | Bin 835 -> 1512 bytes .../NaN_20200911-161309_ROI5.jpg | Bin 820 -> 1447 bytes .../NaN_20200911-170139_ROI5.jpg | Bin 786 -> 1372 bytes .../NaN_20200911-174027_ROI5.jpg | Bin 812 -> 1447 bytes .../NaN_20200911-182406_ROI5.jpg | Bin 802 -> 1428 bytes .../NaN_20200911-182857_ROI5.jpg | Bin 804 -> 1432 bytes .../NaN_20200912-000236_ROI5.jpg | Bin 831 -> 1460 bytes .../NaN_20200912-022014_ROI5.jpg | Bin 826 -> 1467 bytes .../NaN_20200912-022956_ROI5.jpg | Bin 826 -> 1464 bytes .../NaN_20200912-035714_ROI5.jpg | Bin 837 -> 1517 bytes .../NaN_20200912-044544_ROI5.jpg | Bin 839 -> 0 bytes .../NaN_20200912-084236_ROI5.jpg | Bin 825 -> 1448 bytes .../NaN_20200912-101445_ROI5.jpg | Bin 820 -> 1443 bytes .../NaN_20200912-113424_ROI5.jpg | Bin 829 -> 1485 bytes .../NaN_20200912-143842_ROI5.jpg | Bin 804 -> 1386 bytes .../NaN_20200912-150451_ROI5.jpg | Bin 806 -> 1440 bytes .../NaN_20200912-150942_ROI5.jpg | Bin 815 -> 1436 bytes .../NaN_20200912-155321_ROI5.jpg | Bin 811 -> 1437 bytes .../NaN_20200922-210432_ROI4.jpg | Bin 800 -> 1383 bytes ziffer_sortiert_resize/NaN_22618.jpg | Bin 922 -> 1657 bytes ziffer_sortiert_resize/NaN_24663.jpg | Bin 911 -> 1631 bytes ziffer_sortiert_resize/NaN_25328.jpg | Bin 889 -> 1580 bytes ziffer_sortiert_resize/NaN_25517.jpg | Bin 888 -> 1594 bytes ziffer_sortiert_resize/NaN_2815.jpg | Bin 918 -> 0 bytes .../NaN_2_ROI3_20210309-071039.jpg | Bin 834 -> 1520 bytes .../NaN_2_ROI3_20210309-072539.jpg | Bin 823 -> 0 bytes .../NaN_2_ROI3_20210309-093538.jpg | Bin 835 -> 0 bytes .../NaN_2_nt7_20210627-215230.jpg | Bin 771 -> 1304 bytes ziffer_sortiert_resize/NaN_2b_red.jpg | Bin 901 -> 1716 bytes ziffer_sortiert_resize/NaN_2c_red.jpg | Bin 897 -> 1718 bytes .../NaN_2f_4_digit7_20210406-130310.jpg | Bin 845 -> 1589 bytes ziffer_sortiert_resize/NaN_3232.jpg | Bin 886 -> 1560 bytes .../NaN_3_ROI3_20210504-101415.jpg | Bin 870 -> 1618 bytes .../NaN_3_ROI3_20210506-070557.jpg | Bin 862 -> 0 bytes .../NaN_3_nt7_20210629-010417.jpg | Bin 788 -> 1403 bytes ziffer_sortiert_resize/NaN_3b_red.jpg | Bin 901 -> 1677 bytes ziffer_sortiert_resize/NaN_3c_red.jpg | Bin 904 -> 1692 bytes .../NaN_3f_7_digit7_20210406-133800.jpg | Bin 835 -> 0 bytes .../NaN_3f_7_digit7_20210406-134251.jpg | Bin 839 -> 0 bytes .../NaN_4_dec_20210731-032708.jpg | Bin 894 -> 1669 bytes .../NaN_4_dig5_20210629-092208.jpg | Bin 869 -> 1600 bytes .../NaN_4_dig5_20210723-002130.jpg | Bin 763 -> 1252 bytes .../NaN_4_dig6_20210725-165201.jpg | Bin 747 -> 1228 bytes .../NaN_4_dig6_20210726-040341.jpg | Bin 750 -> 0 bytes .../NaN_4_dig6_20210727-213247.jpg | Bin 746 -> 1229 bytes .../NaN_4_digit7_20210406-155719.jpg | Bin 841 -> 1590 bytes .../NaN_4_digit7_20210406-160257.jpg | Bin 836 -> 0 bytes .../NaN_4_digit8_20210406-114340.jpg | Bin 847 -> 1568 bytes .../NaN_4_digit8_20210406-114831.jpg | Bin 852 -> 0 bytes .../NaN_4_digit8_20210406-115029.jpg | Bin 849 -> 0 bytes .../NaN_4_ht6_20210705-083636.jpg | Bin 803 -> 1413 bytes .../NaN_4_ht7_20210701-112725.jpg | Bin 785 -> 1354 bytes ziffer_sortiert_resize/NaN_4b_red.jpg | Bin 895 -> 1688 bytes .../NaN_5_ROI4_20210418-185643.jpg | Bin 891 -> 1671 bytes .../NaN_5_dig5_20210629-201316.jpg | Bin 860 -> 1552 bytes .../NaN_5_dig6_20210629-114809.jpg | Bin 882 -> 1617 bytes .../NaN_5_dig6_20210629-121409.jpg | Bin 888 -> 1626 bytes .../NaN_5_dig6_20210629-124809.jpg | Bin 893 -> 1655 bytes .../NaN_5_dig6_20210629-140209.jpg | Bin 884 -> 0 bytes .../NaN_5_ht7_20210626-181909.jpg | Bin 767 -> 1302 bytes .../NaN_5_ht7_20210626-184815.jpg | Bin 768 -> 1307 bytes ziffer_sortiert_resize/NaN_5b_red.jpg | Bin 901 -> 1692 bytes .../NaN_6_ROI4_20210423-064626.jpg | Bin 896 -> 1664 bytes .../NaN_6_ROI4_20210423-080030.jpg | Bin 887 -> 1624 bytes .../NaN_6_ROI6_20210218-112840.jpg | Bin 853 -> 1500 bytes .../NaN_6_dig5_20210710-041742.jpg | Bin 764 -> 1264 bytes .../NaN_6_dig6_20210629-075007.jpg | Bin 872 -> 1612 bytes .../NaN_6_dig6_20210629-080408.jpg | Bin 889 -> 1632 bytes .../NaN_6_dig6_20210629-091808.jpg | Bin 879 -> 0 bytes .../NaN_6_dig6_20210629-112809.jpg | Bin 882 -> 1619 bytes .../NaN_6_dig6_20210720-121946.jpg | Bin 754 -> 1241 bytes .../NaN_6_dig6_20210723-044733.jpg | Bin 748 -> 1232 bytes .../NaN_6_dig6_20210723-181616.jpg | Bin 749 -> 1243 bytes .../NaN_6_ht6_20210705-100837.jpg | Bin 824 -> 1449 bytes ziffer_sortiert_resize/NaN_6b_red.jpg | Bin 907 -> 1729 bytes ziffer_sortiert_resize/NaN_7357.jpg | Bin 897 -> 1593 bytes .../NaN_7_dig3_20210704-115600.jpg | Bin 733 -> 1187 bytes .../NaN_7_dig3_20210704-150201.jpg | Bin 735 -> 0 bytes .../NaN_7_dig6_20210629-070207.jpg | Bin 892 -> 1641 bytes .../NaN_7_digit8_20210406-130801.jpg | Bin 827 -> 1518 bytes .../NaN_7_ht6_20210629-075202.jpg | Bin 831 -> 1504 bytes ziffer_sortiert_resize/NaN_7b_red.jpg | Bin 882 -> 1662 bytes .../NaN_8_ROI4_20210429-195240.jpg | Bin 870 -> 1617 bytes .../NaN_8_ht6_20210625-211611.jpg | Bin 787 -> 1312 bytes .../NaN_8_ht7_20210625-211611.jpg | Bin 778 -> 1358 bytes .../NaN_8_nt7_20210625-211611.jpg | Bin 762 -> 1319 bytes .../NaN_8_nt7_20210627-023843.jpg | Bin 770 -> 1324 bytes ziffer_sortiert_resize/NaN_8b_red.jpg | Bin 900 -> 1722 bytes .../NaN_9_ROI4_20210503-160233.jpg | Bin 860 -> 1576 bytes .../NaN_9_nt7_20210629-052120.jpg | Bin 790 -> 1378 bytes ziffer_sortiert_resize/NaN_9b_red.jpg | Bin 896 -> 1712 bytes .../NaN_D6_2020-08-22_17-50-20.jpg | Bin 848 -> 1550 bytes .../NaN_D7_2020-08-15_14-04-25.jpg | Bin 801 -> 1421 bytes .../NaN_D7_2020-08-17_22-10-55.jpg | Bin 806 -> 1434 bytes .../NaN_D7_2020-08-22_10-19-13.jpg | Bin 824 -> 1480 bytes .../NaN_D7_2020-08-23_16-54-14.jpg | Bin 852 -> 1574 bytes .../NaN_D8_2020-08-12_12-28-24.jpg | Bin 822 -> 1465 bytes .../NaN_D8_2020-08-13_08-29-42.jpg | Bin 809 -> 1424 bytes .../NaN_D8_2020-08-13_08-32-06.jpg | Bin 810 -> 1418 bytes .../NaN_D8_2020-08-13_14-35-22.jpg | Bin 808 -> 0 bytes .../NaN_D8_2020-08-13_16-15-23.jpg | Bin 812 -> 1427 bytes .../NaN_D8_2020-08-13_23-28-06.jpg | Bin 808 -> 1398 bytes .../NaN_D8_2020-08-14_13-31-10 - Kopie.jpg | Bin 806 -> 1418 bytes .../NaN_D8_2020-08-14_13-31-10.jpg | Bin 806 -> 0 bytes .../NaN_D8_2020-08-14_14-03-49.jpg | Bin 808 -> 0 bytes .../NaN_D8_2020-08-14_15-42-21.jpg | Bin 819 -> 1429 bytes .../NaN_D8_2020-08-14_19-11-52.jpg | Bin 812 -> 1429 bytes .../NaN_D8_2020-08-14_23-41-03.jpg | Bin 813 -> 1429 bytes .../NaN_D8_2020-08-15_14-04-25.jpg | Bin 815 -> 0 bytes .../NaN_D8_2020-08-15_22-03-21.jpg | Bin 809 -> 1422 bytes .../NaN_D8_2020-08-16_02-14-25.jpg | Bin 806 -> 0 bytes .../NaN_D8_2020-08-16_14-20-45.jpg | Bin 813 -> 0 bytes .../NaN_D8_2020-08-16_15-50-49.jpg | Bin 797 -> 1404 bytes .../NaN_D8_2020-08-16_19-50-10.jpg | Bin 819 -> 1471 bytes .../NaN_D8_2020-08-17_12-20-56.jpg | Bin 819 -> 1461 bytes .../NaN_D8_2020-08-17_12-24-48.jpg | Bin 815 -> 0 bytes .../NaN_D8_2020-08-17_12-53-57.jpg | Bin 816 -> 0 bytes .../NaN_D8_2020-08-17_22-10-55.jpg | Bin 806 -> 1431 bytes .../NaN_D8_2020-08-19_20-37-04.jpg | Bin 803 -> 1432 bytes .../NaN_D8_2020-08-19_21-45-50.jpg | Bin 805 -> 1434 bytes .../NaN_D8_2020-08-20_00-40-21.jpg | Bin 806 -> 1425 bytes .../NaN_D8_2020-08-20_10-04-39.jpg | Bin 805 -> 1438 bytes .../NaN_D8_2020-08-20_10-05-26.jpg | Bin 806 -> 1419 bytes .../NaN_D8_2020-08-20_10-07-49.jpg | Bin 808 -> 1441 bytes .../NaN_D8_2020-08-20_10-08-28.jpg | Bin 810 -> 0 bytes .../NaN_D8_2020-08-20_10-09-02.jpg | Bin 809 -> 0 bytes .../NaN_D8_2020-08-20_13-17-10.jpg | Bin 820 -> 1480 bytes .../NaN_D8_2020-08-20_13-26-23.jpg | Bin 821 -> 1485 bytes .../NaN_D8_2020-08-20_13-30-55.jpg | Bin 826 -> 0 bytes .../NaN_D8_2020-08-20_13-35-30.jpg | Bin 827 -> 0 bytes .../NaN_D8_2020-08-20_13-40-03.jpg | Bin 823 -> 1468 bytes .../NaN_D8_2020-08-20_13-49-31.jpg | Bin 820 -> 1466 bytes .../NaN_D8_2020-08-20_13-53-57.jpg | Bin 815 -> 0 bytes .../NaN_D8_2020-08-20_14-23-50.jpg | Bin 815 -> 1435 bytes .../NaN_D8_2020-08-20_15-53-26.jpg | Bin 803 -> 1404 bytes .../NaN_D8_2020-08-20_16-23-23.jpg | Bin 803 -> 0 bytes .../NaN_D8_2020-08-20_16-53-26.jpg | Bin 798 -> 0 bytes .../NaN_D8_2020-08-21_15-01-55.jpg | Bin 899 -> 1656 bytes .../NaN_D8_2020-08-21_15-30-11.jpg | Bin 874 -> 1597 bytes .../NaN_D8_2020-08-21_16-00-06.jpg | Bin 872 -> 1608 bytes .../NaN_D8_2020-08-21_22-49-30.jpg | Bin 856 -> 1565 bytes .../NaN_D8_2020-08-21_22-52-12.jpg | Bin 861 -> 1595 bytes .../NaN_D8_2020-08-22_02-50-08.jpg | Bin 875 -> 1594 bytes .../NaN_D8_2020-08-22_03-20-03.jpg | Bin 874 -> 1593 bytes .../NaN_D8_2020-08-22_03-49-58.jpg | Bin 871 -> 0 bytes .../NaN_D8_2020-08-22_04-19-57.jpg | Bin 866 -> 0 bytes .../NaN_D8_2020-08-22_05-19-46.jpg | Bin 853 -> 1552 bytes .../NaN_D8_2020-08-22_06-19-40.jpg | Bin 850 -> 0 bytes .../NaN_D8_2020-08-22_06-49-36.jpg | Bin 870 -> 1596 bytes .../NaN_D8_2020-08-22_08-19-25.jpg | Bin 856 -> 1550 bytes .../NaN_D8_2020-08-22_10-19-13.jpg | Bin 870 -> 1613 bytes .../NaN_D8_2020-08-22_17-50-20.jpg | Bin 895 -> 1645 bytes .../NaN_D8_2020-08-22_18-50-22.jpg | Bin 864 -> 1578 bytes .../NaN_D8_2020-08-22_19-20-10.jpg | Bin 866 -> 0 bytes .../NaN_D8_2020-08-22_19-50-00.jpg | Bin 883 -> 1620 bytes .../NaN_D8_2020-08-22_20-19-51.jpg | Bin 885 -> 1639 bytes .../NaN_D8_2020-08-23_10-19-11.jpg | Bin 845 -> 1549 bytes .../NaN_D8_2020-08-23_11-19-46.jpg | Bin 840 -> 1531 bytes .../NaN_D8_2020-08-23_12-51-27.jpg | Bin 868 -> 1565 bytes .../NaN_D8_2020-08-23_16-54-14.jpg | Bin 874 -> 1601 bytes .../NaN_D8_2020-08-23_18-24-07.jpg | Bin 877 -> 1609 bytes .../NaN_D8_2020-08-24_11-13-54.jpg | Bin 853 -> 1556 bytes .../NaN_D8_2020-08-24_12-14-03.jpg | Bin 875 -> 1592 bytes .../NaN_D8_2020-08-24_12-44-07.jpg | Bin 875 -> 0 bytes .../NaN_D8_2020-08-24_13-13-51.jpg | Bin 859 -> 1584 bytes .../NaN_D8_2020-08-24_15-13-50.jpg | Bin 892 -> 1631 bytes .../NaN_D8_2020-08-24_15-43-55.jpg | Bin 870 -> 1578 bytes .../NaN_D8_2020-08-24_16-15-36.jpg | Bin 866 -> 1574 bytes .../NaN_D8_2020-08-24_16-45-06.jpg | Bin 858 -> 1586 bytes .../NaN_D8_2020-08-24_17-44-56.jpg | Bin 858 -> 1559 bytes .../NaN_D8_2020-08-24_18-14-54.jpg | Bin 839 -> 1505 bytes .../NaN_D8_2020-08-24_18-44-49.jpg | Bin 862 -> 1560 bytes .../NaN_D8_2020-08-24_19-14-45.jpg | Bin 858 -> 0 bytes .../NaN_D8_2020-08-24_19-44-43.jpg | Bin 862 -> 0 bytes .../NaN_D8_2020-08-24_20-14-36.jpg | Bin 871 -> 1587 bytes .../NaN_D8_2020-08-25_04-15-03.jpg | Bin 852 -> 1560 bytes .../NaN_D8_2020-08-25_07-44-47.jpg | Bin 849 -> 1564 bytes .../NaN_D8_2020-08-25_08-44-42.jpg | Bin 867 -> 1582 bytes .../NaN_D8_2020-08-25_09-14-40.jpg | Bin 872 -> 1597 bytes .../NaN_D8_2020-08-25_09-44-49.jpg | Bin 869 -> 0 bytes .../NaN_D8_2020-08-25_11-44-35.jpg | Bin 872 -> 1609 bytes .../NaN_Ziffer_NaN_0001.jpg | Bin 872 -> 1273 bytes .../NaN_Ziffer_NaN_0078.jpg | Bin 887 -> 1310 bytes .../NaN_Ziffer_NaN_0120.jpg | Bin 884 -> 1284 bytes .../NaN_Ziffer_NaN_0197.jpg | Bin 892 -> 1307 bytes .../NaN_Ziffer_NaN_0198.jpg | Bin 895 -> 0 bytes .../NaN_Ziffer_NaN_0236.jpg | Bin 889 -> 1306 bytes .../NaN_Ziffer_NaN_0285.jpg | Bin 890 -> 1330 bytes .../NaN_Ziffer_NaN_0351.jpg | Bin 896 -> 1330 bytes .../NaN_Ziffer_NaN_0393.jpg | Bin 933 -> 1415 bytes .../NaN_Ziffer_NaN_0442.jpg | Bin 929 -> 1412 bytes .../NaN_Ziffer_NaN_0471.jpg | Bin 927 -> 1423 bytes .../NaN_Ziffer_NaN_0483.jpg | Bin 929 -> 1423 bytes .../NaN_Ziffer_NaN_0588.jpg | Bin 917 -> 1388 bytes .../NaN_Ziffer_NaN_0590.jpg | Bin 912 -> 0 bytes .../NaN_Ziffer_NaN_0692.jpg | Bin 916 -> 1389 bytes .../NaN_Ziffer_NaN_0693.jpg | Bin 918 -> 0 bytes .../NaN_Ziffer_NaN_0743.jpg | Bin 910 -> 1382 bytes .../NaN_Ziffer_NaN_0803.jpg | Bin 906 -> 1349 bytes .../NaN_Ziffer_NaN_0804.jpg | Bin 910 -> 0 bytes .../NaN_Ziffer_NaN_0834.jpg | Bin 905 -> 1357 bytes .../NaN_Ziffer_NaN_0869.jpg | Bin 906 -> 1348 bytes .../NaN_Ziffer_NaN_0891.jpg | Bin 913 -> 0 bytes .../NaN_Ziffer_NaN_0903.jpg | Bin 907 -> 1360 bytes .../NaN_Ziffer_NaN_0990.jpg | Bin 901 -> 1354 bytes .../NaN_Ziffer_NaN_1060.jpg | Bin 904 -> 1365 bytes .../NaN_Ziffer_NaN_1072.jpg | Bin 931 -> 1430 bytes .../NaN_Ziffer_NaN_1140.jpg | Bin 933 -> 1446 bytes .../NaN_Ziffer_NaN_1179.jpg | Bin 934 -> 1432 bytes .../NaN_Ziffer_NaN_1214.jpg | Bin 921 -> 1384 bytes .../NaN_Ziffer_NaN_1238.jpg | Bin 749 -> 1013 bytes .../NaN_Ziffer_NaN_1239.jpg | Bin 676 -> 814 bytes .../NaN_Ziffer_NaN_1240.jpg | Bin 731 -> 916 bytes .../NaN_Ziffer_NaN_1241.jpg | Bin 643 -> 644 bytes .../NaN_Ziffer_NaN_1242.jpg | Bin 853 -> 1326 bytes .../NaN_Ziffer_NaN_1243.jpg | Bin 794 -> 1135 bytes .../NaN_Ziffer_NaN_1244.jpg | Bin 935 -> 1508 bytes .../NaN_Ziffer_NaN_1245.jpg | Bin 732 -> 931 bytes .../NaN_Ziffer_NaN_1246.jpg | Bin 834 -> 1223 bytes .../NaN_Ziffer_NaN_1247.jpg | Bin 778 -> 1071 bytes .../NaN_Ziffer_NaN_1248.jpg | Bin 732 -> 921 bytes .../NaN_Ziffer_NaN_1249.jpg | Bin 793 -> 1062 bytes .../NaN_Ziffer_NaN_1250.jpg | Bin 933 -> 1433 bytes .../NaN_Ziffer_NaN_1251.jpg | Bin 815 -> 1174 bytes .../NaN_Ziffer_NaN_1252.jpg | Bin 721 -> 987 bytes .../NaN_Ziffer_NaN_1253.jpg | Bin 731 -> 946 bytes .../NaN_Ziffer_NaN_1254.jpg | Bin 743 -> 949 bytes .../NaN_Ziffer_NaN_1255.jpg | Bin 766 -> 1018 bytes .../NaN_Ziffer_NaN_1256.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1257.jpg | Bin 666 -> 0 bytes .../NaN_Ziffer_NaN_1258.jpg | Bin 727 -> 935 bytes .../NaN_Ziffer_NaN_1259.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1260.jpg | Bin 818 -> 1237 bytes .../NaN_Ziffer_NaN_1261.jpg | Bin 874 -> 1330 bytes .../NaN_Ziffer_NaN_1262.jpg | Bin 664 -> 760 bytes .../NaN_Ziffer_NaN_1263.jpg | Bin 730 -> 994 bytes .../NaN_Ziffer_NaN_1264.jpg | Bin 771 -> 1108 bytes .../NaN_Ziffer_NaN_1265.jpg | Bin 719 -> 955 bytes .../NaN_Ziffer_NaN_1266.jpg | Bin 662 -> 0 bytes .../NaN_Ziffer_NaN_1267.jpg | Bin 702 -> 882 bytes .../NaN_Ziffer_NaN_1268.jpg | Bin 672 -> 855 bytes .../NaN_Ziffer_NaN_1269.jpg | Bin 782 -> 0 bytes .../NaN_Ziffer_NaN_1270.jpg | Bin 662 -> 760 bytes .../NaN_Ziffer_NaN_1271.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1272.jpg | Bin 671 -> 793 bytes .../NaN_Ziffer_NaN_1273.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1274.jpg | Bin 714 -> 0 bytes .../NaN_Ziffer_NaN_1275.jpg | Bin 729 -> 954 bytes .../NaN_Ziffer_NaN_1276.jpg | Bin 766 -> 1052 bytes .../NaN_Ziffer_NaN_1277.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1278.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1279.jpg | Bin 693 -> 826 bytes .../NaN_Ziffer_NaN_1280.jpg | Bin 660 -> 717 bytes .../NaN_Ziffer_NaN_1281.jpg | Bin 774 -> 0 bytes .../NaN_Ziffer_NaN_1282.jpg | Bin 736 -> 975 bytes .../NaN_Ziffer_NaN_1283.jpg | Bin 643 -> 0 bytes .../NaN_Ziffer_NaN_1284.jpg | Bin 795 -> 0 bytes .../NaN_Ziffer_NaN_1285.jpg | Bin 845 -> 1229 bytes .../NaN_Ziffer_NaN_1286.jpg | Bin 829 -> 1246 bytes .../NaN_Ziffer_NaN_1287.jpg | Bin 681 -> 832 bytes .../NaN_Ziffer_NaN_1288.jpg | Bin 909 -> 1372 bytes .../NaN_Ziffer_NaN_1329.jpg | Bin 913 -> 1353 bytes .../NaN_Ziffer_NaN_1421.jpg | Bin 906 -> 1356 bytes .../NaN_Ziffer_NaN_1515.jpg | Bin 908 -> 1369 bytes .../NaN_Ziffer_NaN_1542.jpg | Bin 897 -> 1303 bytes .../NaN_Ziffer_NaN_1726.jpg | Bin 885 -> 1285 bytes .../NaN_Ziffer_NaN_2127.jpg | Bin 882 -> 1276 bytes .../NaN_Ziffer_NaN_2212.jpg | Bin 708 -> 0 bytes .../NaN_Ziffer_NaN_2243.jpg | Bin 881 -> 1291 bytes .../NaN_Ziffer_NaN_2330.jpg | Bin 888 -> 1289 bytes .../NaN_Ziffer_NaN_2333.jpg | Bin 887 -> 1325 bytes .../NaN_Ziffer_NaN_2387.jpg | Bin 901 -> 1368 bytes .../NaN_Ziffer_NaN_2548.jpg | Bin 793 -> 1104 bytes .../NaN_Ziffer_NaN_2945.jpg | Bin 908 -> 1371 bytes .../NaN_Ziffer_NaN_3300.jpg | Bin 693 -> 835 bytes .../NaN_Ziffer_NaN_3367.jpg | Bin 903 -> 1329 bytes .../NaN_Ziffer_NaN_3401.jpg | Bin 812 -> 1080 bytes .../NaN_Ziffer_NaN_3443.jpg | Bin 900 -> 1342 bytes .../NaN_Ziffer_NaN_3450.jpg | Bin 905 -> 1352 bytes .../NaN_Ziffer_NaN_3451.jpg | Bin 912 -> 0 bytes .../NaN_Ziffer_NaN_3462.jpg | Bin 907 -> 1373 bytes .../NaN_Ziffer_NaN_3528.jpg | Bin 897 -> 1354 bytes .../NaN_Ziffer_NaN_3589.jpg | Bin 909 -> 1362 bytes .../NaN_Ziffer_NaN_3606.jpg | Bin 905 -> 1323 bytes .../NaN_Ziffer_NaN_3737.jpg | Bin 919 -> 1408 bytes ziffer_sortiert_resize/NaN_counterNaN.jpg | Bin 902 -> 1611 bytes ziffer_sortiert_resize/NaN_digit7_081710.jpg | Bin 817 -> 1523 bytes ziffer_sortiert_resize/NaN_digit7_083718.jpg | Bin 844 -> 1552 bytes ziffer_sortiert_resize/NaN_digit7_105317.jpg | Bin 837 -> 1532 bytes ziffer_sortiert_resize/NaN_digit7_280510.jpg | Bin 833 -> 1529 bytes ziffer_sortiert_resize/NaN_digit7_360610.jpg | Bin 835 -> 0 bytes ziffer_sortiert_resize/NaN_digit8_001307.jpg | Bin 822 -> 1498 bytes ziffer_sortiert_resize/NaN_digit8_015813.jpg | Bin 797 -> 1466 bytes ziffer_sortiert_resize/NaN_digit8_023920.jpg | Bin 808 -> 1494 bytes ziffer_sortiert_resize/NaN_digit8_093323.jpg | Bin 820 -> 1545 bytes ziffer_sortiert_resize/NaN_digit8_094723.jpg | Bin 821 -> 1504 bytes ziffer_sortiert_resize/NaN_digit8_112109.jpg | Bin 803 -> 1481 bytes ziffer_sortiert_resize/NaN_digit8_131319.jpg | Bin 815 -> 1521 bytes ziffer_sortiert_resize/NaN_digit8_142521.jpg | Bin 820 -> 1531 bytes ziffer_sortiert_resize/NaN_digit8_174021.jpg | Bin 837 -> 1549 bytes ziffer_sortiert_resize/NaN_digit8_175708.jpg | Bin 834 -> 1556 bytes ziffer_sortiert_resize/NaN_digit8_202800.jpg | Bin 811 -> 1507 bytes ziffer_sortiert_resize/NaN_digit8_213207.jpg | Bin 822 -> 0 bytes ziffer_sortiert_resize/NaN_digit8_230619.jpg | Bin 804 -> 1511 bytes ziffer_sortiert_resize/NaN_digit8_244921.jpg | Bin 821 -> 1533 bytes ziffer_sortiert_resize/NaN_digit8_292900.jpg | Bin 803 -> 0 bytes ziffer_sortiert_resize/NaN_digit8_324605.jpg | Bin 817 -> 1534 bytes ziffer_sortiert_resize/NaN_digit8_331707.jpg | Bin 814 -> 1516 bytes ziffer_sortiert_resize/NaN_digit8_350211.jpg | Bin 811 -> 0 bytes ziffer_sortiert_resize/NaN_digit8_355413.jpg | Bin 820 -> 1508 bytes ziffer_sortiert_resize/NaN_digit8_374809.jpg | Bin 800 -> 1459 bytes ziffer_sortiert_resize/NaN_digit8_405620.jpg | Bin 817 -> 1531 bytes ziffer_sortiert_resize/NaN_digit8_431007.jpg | Bin 804 -> 1498 bytes ziffer_sortiert_resize/NaN_digit8_455510.jpg | Bin 825 -> 1524 bytes ziffer_sortiert_resize/NaN_digit8_463601.jpg | Bin 793 -> 1441 bytes ziffer_sortiert_resize/NaN_digit8_494013.jpg | Bin 790 -> 1427 bytes ziffer_sortiert_resize/NaN_digit8_503821.jpg | Bin 809 -> 0 bytes ziffer_sortiert_resize/NaN_digit8_534307.jpg | Bin 832 -> 0 bytes ziffer_sortiert_resize/NaN_digit8_571722.jpg | Bin 818 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-10-06.jpg | Bin 884 -> 1627 bytes .../NaN_ziffer1_2020-04-16_11-20-06.jpg | Bin 884 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-30-06.jpg | Bin 891 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-40-06.jpg | Bin 882 -> 0 bytes .../NaN_ziffer1_2020-04-16_11-50-06.jpg | Bin 885 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-00-06.jpg | Bin 889 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-10-06.jpg | Bin 888 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-20-06.jpg | Bin 880 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-30-06.jpg | Bin 888 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-40-06.jpg | Bin 888 -> 0 bytes .../NaN_ziffer1_2020-04-16_12-50-06.jpg | Bin 891 -> 0 bytes .../NaN_ziffer1_2020-04-16_13-00-06.jpg | Bin 887 -> 0 bytes .../NaN_ziffer1_2020-04-28_05-10-06.jpg | Bin 883 -> 1625 bytes .../NaN_ziffer1_2020-05-02_07-40-06.jpg | Bin 883 -> 0 bytes .../NaN_ziffer1_2020-05-14_14-10-06.jpg | Bin 896 -> 1672 bytes .../NaN_ziffer4_2020-04-25_09-50-06.jpg | Bin 930 -> 1759 bytes .../NaN_ziffer4_2020-04-25_11-20-06.jpg | Bin 935 -> 1740 bytes .../NaN_ziffer4_2020-04-25_13-30-06.jpg | Bin 935 -> 1777 bytes .../NaN_ziffer4_2020-05-17_18-50-14.jpg | Bin 925 -> 1746 bytes .../NaN_ziffer4_2020-05-17_19-20-21.jpg | Bin 938 -> 1757 bytes .../NaN_ziffer4_2020-05-17_21-50-12.jpg | Bin 936 -> 1792 bytes .../NaN_ziffer4_2020-05-18_03-10-16.jpg | Bin 939 -> 1762 bytes .../NaN_ziffer4_2020-05-18_06-10-07.jpg | Bin 951 -> 1782 bytes .../NaN_ziffer5_2019-11-25_13-17-52.jpg | Bin 902 -> 1379 bytes .../NaN_ziffer5_2019-11-25_13-22-52.jpg | Bin 910 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-27-52.jpg | Bin 910 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-32-52.jpg | Bin 917 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-37-52.jpg | Bin 910 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-42-52.jpg | Bin 911 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-47-52.jpg | Bin 918 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-52-52.jpg | Bin 919 -> 0 bytes .../NaN_ziffer5_2019-11-25_13-57-52.jpg | Bin 917 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-02-52.jpg | Bin 919 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-07-52.jpg | Bin 923 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-12-52.jpg | Bin 927 -> 0 bytes .../NaN_ziffer5_2019-11-25_14-17-52.jpg | Bin 915 -> 1370 bytes .../NaN_ziffer5_2020-04-14_16-50-06.jpg | Bin 893 -> 1625 bytes .../NaN_ziffer5_2020-04-16_11-40-06.jpg | Bin 868 -> 1600 bytes .../NaN_ziffer5_2020-04-17_06-00-06.jpg | Bin 884 -> 1648 bytes .../NaN_ziffer5_2020-04-17_06-10-06.jpg | Bin 898 -> 1640 bytes .../NaN_ziffer5_2020-04-17_07-00-07.jpg | Bin 883 -> 1643 bytes .../NaN_ziffer5_2020-04-17_08-00-06.jpg | Bin 902 -> 1682 bytes .../NaN_ziffer5_2020-04-18_17-50-06.jpg | Bin 887 -> 1628 bytes .../NaN_ziffer5_2020-04-18_18-40-06.jpg | Bin 893 -> 1663 bytes .../NaN_ziffer5_2020-04-18_20-20-07.jpg | Bin 894 -> 1661 bytes .../NaN_ziffer5_2020-04-21_05-10-06.jpg | Bin 889 -> 1638 bytes .../NaN_ziffer5_2020-04-21_05-40-06.jpg | Bin 878 -> 1612 bytes .../NaN_ziffer5_2020-04-21_06-00-06.jpg | Bin 890 -> 1618 bytes .../NaN_ziffer5_2020-04-21_07-00-07.jpg | Bin 893 -> 1642 bytes .../NaN_ziffer5_2020-04-23_05-30-06.jpg | Bin 901 -> 1668 bytes .../NaN_ziffer5_2020-04-23_07-00-07.jpg | Bin 900 -> 1666 bytes .../NaN_ziffer5_2020-04-25_09-30-06.jpg | Bin 906 -> 0 bytes .../NaN_ziffer5_2020-04-25_09-50-06.jpg | Bin 910 -> 1697 bytes .../NaN_ziffer5_2020-04-25_10-00-06.jpg | Bin 907 -> 0 bytes .../NaN_ziffer5_2020-04-25_10-30-06.jpg | Bin 913 -> 0 bytes .../NaN_ziffer5_2020-04-25_10-50-06.jpg | Bin 912 -> 0 bytes .../NaN_ziffer5_2020-04-27_16-50-06.jpg | Bin 889 -> 1647 bytes .../NaN_ziffer5_2020-04-27_17-00-07.jpg | Bin 911 -> 1680 bytes .../NaN_ziffer5_2020-04-27_17-20-06.jpg | Bin 894 -> 1620 bytes .../NaN_ziffer5_2020-04-27_17-40-06.jpg | Bin 899 -> 1646 bytes .../NaN_ziffer5_2020-04-30_10-20-06.jpg | Bin 869 -> 1591 bytes .../NaN_ziffer5_2020-04-30_11-20-06.jpg | Bin 857 -> 1561 bytes .../NaN_ziffer5_2020-04-30_13-00-06.jpg | Bin 880 -> 1614 bytes .../NaN_ziffer5_2020-04-30_13-40-06.jpg | Bin 895 -> 1657 bytes .../NaN_ziffer5_2020-05-02_09-00-07.jpg | Bin 904 -> 1694 bytes .../NaN_ziffer5_2020-05-02_10-00-06.jpg | Bin 895 -> 1677 bytes .../NaN_ziffer5_2020-05-02_10-30-06.jpg | Bin 888 -> 1657 bytes .../NaN_ziffer5_2020-05-02_11-00-06.jpg | Bin 897 -> 0 bytes .../NaN_ziffer5_2020-05-02_11-20-06.jpg | Bin 902 -> 1676 bytes .../NaN_ziffer5_2020-05-04_14-50-06.jpg | Bin 874 -> 1621 bytes .../NaN_ziffer5_2020-05-04_16-00-06.jpg | Bin 865 -> 1591 bytes .../NaN_ziffer5_2020-05-04_16-40-06.jpg | Bin 876 -> 1600 bytes .../NaN_ziffer5_2020-05-07_06-20-06.jpg | Bin 869 -> 1605 bytes .../NaN_ziffer5_2020-05-07_06-50-06.jpg | Bin 881 -> 1619 bytes .../NaN_ziffer5_2020-05-07_07-10-06.jpg | Bin 885 -> 1623 bytes .../NaN_ziffer5_2020-05-09_04-20-06.jpg | Bin 879 -> 0 bytes .../NaN_ziffer5_2020-05-09_05-58-03.jpg | Bin 894 -> 0 bytes .../NaN_ziffer5_2020-05-09_06-00-07.jpg | Bin 889 -> 0 bytes .../NaN_ziffer5_2020-05-09_08-30-06.jpg | Bin 899 -> 1658 bytes .../NaN_ziffer5_2020-05-11_08-10-07.jpg | Bin 884 -> 0 bytes .../NaN_ziffer5_2020-05-11_10-30-07.jpg | Bin 890 -> 1644 bytes .../NaN_ziffer5_2020-05-11_11-10-06.jpg | Bin 895 -> 1662 bytes .../NaN_ziffer5_2020-05-13_22-00-06.jpg | Bin 883 -> 1650 bytes .../NaN_ziffer5_2020-05-13_23-50-06.jpg | Bin 894 -> 0 bytes .../NaN_ziffer5_2020-05-14_03-00-06.jpg | Bin 893 -> 0 bytes .../NaN_ziffer5_2020-05-14_03-20-06.jpg | Bin 892 -> 1647 bytes .../NaN_ziffer5_2020-05-14_07-10-06.jpg | Bin 895 -> 1669 bytes .../NaN_ziffer5_2020-05-14_07-20-06.jpg | Bin 893 -> 1661 bytes .../NaN_ziffer5_2020-05-15_22-00-06.jpg | Bin 907 -> 1694 bytes .../NaN_ziffer5_2020-05-16_02-00-07.jpg | Bin 896 -> 0 bytes .../NaN_ziffer5_2020-05-16_04-30-06.jpg | Bin 918 -> 1711 bytes .../NaN_ziffer5_2020-05-16_05-40-06.jpg | Bin 898 -> 0 bytes .../NaN_ziffer5_2020-05-16_05-50-06.jpg | Bin 892 -> 0 bytes .../NaN_ziffer5_2020-05-16_06-05-08.jpg | Bin 914 -> 0 bytes .../NaN_ziffer5_2020-05-18_02-00-23.jpg | Bin 906 -> 0 bytes .../NaN_ziffer5_2020-05-18_03-40-10.jpg | Bin 905 -> 1678 bytes .../NaN_ziffer5_2020-05-18_04-10-09.jpg | Bin 903 -> 0 bytes .../NaN_ziffer5_2020-05-18_05-20-11.jpg | Bin 888 -> 1650 bytes .../NaN_ziffer5_2020-05-19_19-00-13.jpg | Bin 886 -> 1635 bytes .../NaN_ziffer5_2020-05-19_19-40-14.jpg | Bin 893 -> 0 bytes .../NaN_ziffer5_2020-05-19_22-00-06.jpg | Bin 893 -> 1639 bytes .../NaN_ziffer5_2020-05-20_00-50-13.jpg | Bin 883 -> 0 bytes .../NaN_ziffer5_2020-05-20_03-10-13.jpg | Bin 883 -> 0 bytes .../NaN_ziffer5_2020-05-20_05-50-14.jpg | Bin 885 -> 0 bytes .../NaN_ziffer5_2020-05-24_16-40-14.jpg | Bin 884 -> 0 bytes .../NaN_ziffer5_2020-05-27_06-40-07.jpg | Bin 879 -> 1611 bytes .../NaN_ziffer5_2020-05-27_08-40-19.jpg | Bin 889 -> 1655 bytes 1877 files changed, 3375 insertions(+), 1318 deletions(-) create mode 100644 01 - Clean Images.ipynb rename .ipynb_checkpoints/Image_Preparation-checkpoint.ipynb => 02 - Image_Preparation.ipynb (84%) delete mode 100644 Image_Preparation.ipynb create mode 100644 collectmeterdigits/__init__.py create mode 100644 collectmeterdigits/__main__.py create mode 100644 collectmeterdigits/__pycache__/__init__.cpython-311.pyc create mode 100644 collectmeterdigits/__pycache__/__init__.cpython-39.pyc create mode 100644 collectmeterdigits/__pycache__/collect.cpython-311.pyc create mode 100644 collectmeterdigits/__pycache__/collect.cpython-39.pyc create mode 100644 collectmeterdigits/__pycache__/glob.cpython-311.pyc create mode 100644 collectmeterdigits/__pycache__/glob.cpython-39.pyc create mode 100644 collectmeterdigits/__pycache__/labeling.cpython-311.pyc create mode 100644 collectmeterdigits/__pycache__/labeling.cpython-39.pyc create mode 100644 collectmeterdigits/__pycache__/predict.cpython-311.pyc create mode 100644 collectmeterdigits/__pycache__/predict.cpython-39.pyc create mode 100644 collectmeterdigits/collect.py create mode 100644 collectmeterdigits/glob.py create mode 100644 collectmeterdigits/hash_manual.py create mode 100644 collectmeterdigits/labeling.py create mode 100644 collectmeterdigits/models/dig-class100-0160_s2_q.tflite create mode 100644 collectmeterdigits/predict.py create mode 100644 data/HistoricHashData.txt create mode 100644 dig-class11_1800_s2.tflite create mode 100644 dig-class11_1800_s2_q.tflite create mode 100644 dig-class11_1800_s2_q.tflite.tflite create mode 100644 test/fingerprint.pb create mode 100644 test/saved_model.pb create mode 100644 test/variables/variables.data-00000-of-00001 create mode 100644 test/variables/variables.index delete mode 100644 ziffer_sortiert_raw/0 - 0_1_20211231-092401.jpg delete mode 100644 ziffer_sortiert_raw/0.0_dig1_20211007-142923.jpg delete mode 100644 ziffer_sortiert_raw/0_0_digit1_20210323-194921.jpg delete mode 100644 ziffer_sortiert_raw/0_0_digit2_20210422-161722.jpg delete mode 100644 ziffer_sortiert_raw/0_0_digit3_20210406-114340.jpg delete mode 100644 ziffer_sortiert_raw/0_0_nt5_20210625-192438.jpg delete mode 100644 ziffer_sortiert_raw/0_1_ht5_20210626-092329.jpg delete mode 100644 ziffer_sortiert_raw/0_3_ht1_20210705-044841.jpg delete mode 100644 ziffer_sortiert_raw/0_7_nt5_20210627-214025.jpg delete mode 100644 ziffer_sortiert_raw/0_8_ht1_20210625-211611.jpg delete mode 100644 ziffer_sortiert_raw/0_8_ht5_20210625-211611.jpg delete mode 100644 ziffer_sortiert_raw/0_8_nt5_20210625-211611.jpg delete mode 100644 ziffer_sortiert_raw/0_Ziffer_0_0019.jpg delete mode 100644 ziffer_sortiert_raw/0_dig1_20220109-120732.jpg delete mode 100644 ziffer_sortiert_raw/0_dig1_20220109-121223.jpg delete mode 100644 ziffer_sortiert_raw/0_dig6_20220109-081443.jpg delete mode 100644 ziffer_sortiert_raw/0_warmwasser_44_20221030-082008.jpg delete mode 100644 ziffer_sortiert_raw/0_warmwasser_66_20221103-204548.jpg delete mode 100644 ziffer_sortiert_raw/0_wassertemperatur_dec2_20221120134324.jpg delete mode 100644 ziffer_sortiert_raw/0_ziffer1_2019-11-24_08-22-52.jpg delete mode 100644 ziffer_sortiert_raw/1-10_4_20220102-144242.jpg delete mode 100644 ziffer_sortiert_raw/1_1_20220211.jpg delete mode 100644 ziffer_sortiert_raw/1_1_ROI5_20210309-072539.jpg delete mode 100644 ziffer_sortiert_raw/1_1_digit3_20210315-230740.jpg delete mode 100644 ziffer_sortiert_raw/1_1_ht2_20210626-090405.jpg delete mode 100644 ziffer_sortiert_raw/1_1_ht2_20210629-005435.jpg delete mode 100644 ziffer_sortiert_raw/1_1_ht7_20210626-121031.jpg delete mode 100644 ziffer_sortiert_raw/1_1_nt2_20210626-090405.jpg delete mode 100644 ziffer_sortiert_raw/1_1_nt2_20210626-090856.jpg delete mode 100644 ziffer_sortiert_raw/1_2_20220211.jpg delete mode 100644 ziffer_sortiert_raw/1_8_nt4_20210625-211611.jpg delete mode 100644 ziffer_sortiert_raw/1_dig1_20220725-020202.jpg delete mode 100644 ziffer_sortiert_raw/1_dig3_20220629-061155.jpg delete mode 100644 ziffer_sortiert_raw/1_dig8_20220627-194122.jpg delete mode 100644 ziffer_sortiert_raw/1_waerme_6_20221031-112301.jpg delete mode 100644 ziffer_sortiert_raw/1_ziffer5_2019-10-26_11-58-57.jpg delete mode 100644 ziffer_sortiert_raw/1_ziffer5_2020-04-17_14-42-54.jpg delete mode 100644 ziffer_sortiert_raw/2.0_dig3_20211014-213529.jpg delete mode 100644 ziffer_sortiert_raw/2_10_ROI2_20210225-023326.jpg delete mode 100644 ziffer_sortiert_raw/2_10_ROI2_20210225-053804.jpg delete mode 100644 ziffer_sortiert_raw/2_10_ROI2_20210225-083323.jpg delete mode 100644 ziffer_sortiert_raw/2_2.jpg delete mode 100644 ziffer_sortiert_raw/2_23654.jpg delete mode 100644 ziffer_sortiert_raw/2_2_20220211.jpg delete mode 100644 ziffer_sortiert_raw/2_2_ROI2_20210224-233751.jpg delete mode 100644 ziffer_sortiert_raw/2_2_ROI2_20210225-060710.jpg delete mode 100644 ziffer_sortiert_raw/2_2_ROI2_20210225-064128.jpg delete mode 100644 ziffer_sortiert_raw/2_2_ROI3_20210424-160317.jpg delete mode 100644 ziffer_sortiert_raw/2_2_dig5_20210629-181611.jpg delete mode 100644 ziffer_sortiert_raw/2_2_digit3_20210320-014308.jpg delete mode 100644 ziffer_sortiert_raw/2_2_ht6_20210626-093311.jpg delete mode 100644 ziffer_sortiert_raw/2_dig3_20220109-123147.jpg delete mode 100644 ziffer_sortiert_raw/2_dig8_20220627-190725.jpg delete mode 100644 ziffer_sortiert_raw/2_red1_19700109-105856.jpg delete mode 100644 ziffer_sortiert_raw/2_wassertemperatur_dec2_20221120-141324.jpg delete mode 100644 ziffer_sortiert_raw/2_ziffer3_2019-11-24_08-32-52.jpg delete mode 100644 ziffer_sortiert_raw/3-7_7_20211231-082402.jpg delete mode 100644 ziffer_sortiert_raw/3_11.jpg delete mode 100644 ziffer_sortiert_raw/3_31.jpg delete mode 100644 ziffer_sortiert_raw/3_3_ROI4_20210316-171213.jpg delete mode 100644 ziffer_sortiert_raw/3_3_dig2_20210628-183804.jpg delete mode 100644 ziffer_sortiert_raw/3_3_dig2_20210628-221205.jpg delete mode 100644 ziffer_sortiert_raw/3_5_dig5_20210629-184812.jpg delete mode 100644 ziffer_sortiert_raw/3_8e8af8f18fce9dfdc3f560597674748f.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210628-182804.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210629-143210.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210629-181211.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210629-201116.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210629-202916.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210629-213437.jpg delete mode 100644 ziffer_sortiert_raw/3_9_dig2_20210629-215437.jpg delete mode 100644 ziffer_sortiert_raw/3_dig3_20220419-110524.jpg delete mode 100644 ziffer_sortiert_raw/3_digit3_20210816-132705.jpg delete mode 100644 ziffer_sortiert_raw/3_wassertemperatur_dec2_20221120-150123.jpg delete mode 100644 ziffer_sortiert_raw/4 -4_3_20211231-094402.jpg delete mode 100644 ziffer_sortiert_raw/4-1_3_20211231-120401.jpg delete mode 100644 ziffer_sortiert_raw/4_0_ht6_20210627-222846.jpg delete mode 100644 ziffer_sortiert_raw/4_1_ht6_20210627-202210.jpg delete mode 100644 ziffer_sortiert_raw/4_26142.jpg delete mode 100644 ziffer_sortiert_raw/4_4_ROI4_20210308-222020.jpg delete mode 100644 ziffer_sortiert_raw/4_4_dig5_20210629-202316.jpg delete mode 100644 ziffer_sortiert_raw/4_4_ht6_20210626-191722.jpg delete mode 100644 ziffer_sortiert_raw/4_805e1ac0528dc20138db30bc8ad061d8.jpg delete mode 100644 ziffer_sortiert_raw/4_dig1_20220725-200205.jpg delete mode 100644 ziffer_sortiert_raw/4_dig5_20220409-050651.jpg delete mode 100644 ziffer_sortiert_raw/4_dig8_20220627-201028.jpg delete mode 100644 ziffer_sortiert_raw/4_dig9_20220627-194613.jpg delete mode 100644 ziffer_sortiert_raw/4_waerme_5_20221030-064008.jpg delete mode 100644 ziffer_sortiert_raw/4_waerme_5_20221030-081008.jpg delete mode 100644 ziffer_sortiert_raw/5_0f2eb48a7067c123e6fd1c65d6f68b6a.jpg delete mode 100644 ziffer_sortiert_raw/5_5_ROI3_20210315-220240.jpg delete mode 100644 ziffer_sortiert_raw/5_5_ROI3_20210320-014808.jpg delete mode 100644 ziffer_sortiert_raw/5_5_dig5_20210628-183204.jpg delete mode 100644 ziffer_sortiert_raw/5_5_digit7_20210526-100757.jpg delete mode 100644 ziffer_sortiert_raw/5_5_nt3_20210625-175228.jpg delete mode 100644 ziffer_sortiert_raw/5_dig3_20220629-040655.jpg delete mode 100644 ziffer_sortiert_raw/5_dig5_20220413-000819.jpg delete mode 100644 ziffer_sortiert_raw/6-1.jpg delete mode 100644 ziffer_sortiert_raw/6.0_dig5_20210923-091656.jpg delete mode 100644 ziffer_sortiert_raw/6_6_ROI4_20210419-105812.jpg delete mode 100644 ziffer_sortiert_raw/6_dig5b_19700109-105449.jpg delete mode 100644 ziffer_sortiert_raw/6_dig6_20220102-215020.jpg delete mode 100644 ziffer_sortiert_raw/6_wassertemperatur_dec2_20221119-183727.jpg delete mode 100644 ziffer_sortiert_raw/7-1_6_20211231-120401.jpg delete mode 100644 ziffer_sortiert_raw/7.0_dig3_20211005-135251.jpg delete mode 100644 ziffer_sortiert_raw/7.0_dig5_20210923-092147.jpg delete mode 100644 ziffer_sortiert_raw/7_0_dig5_20210629-093808.jpg delete mode 100644 ziffer_sortiert_raw/7_0_dig5_20210629-095608.jpg delete mode 100644 ziffer_sortiert_raw/7_0_dig5_20210629-130409.jpg delete mode 100644 ziffer_sortiert_raw/7_10e7c4f283a7a1b58441be5d4b5ec43d.jpg delete mode 100644 ziffer_sortiert_raw/7_1_20220211.jpg delete mode 100644 ziffer_sortiert_raw/7_1_dig4_20210628-184404.jpg delete mode 100644 ziffer_sortiert_raw/7_2_20220211.jpg delete mode 100644 ziffer_sortiert_raw/7_7_ROI4_20210312-235358.jpg delete mode 100644 ziffer_sortiert_raw/7_7_dig4_20210628-180600.jpg delete mode 100644 ziffer_sortiert_raw/7_7_dig4_20210628-183604.jpg delete mode 100644 ziffer_sortiert_raw/7_7_dig4_20210628-223605.jpg delete mode 100644 ziffer_sortiert_raw/7_7_dig5_20210730-182850.jpg delete mode 100644 ziffer_sortiert_raw/7_7_nt6_20210626-043348.jpg delete mode 100644 ziffer_sortiert_raw/7_dig5_20220106-034509.jpg delete mode 100644 ziffer_sortiert_raw/7_dig6_20220106-171136 (2).jpg delete mode 100644 ziffer_sortiert_raw/7_dig6_20220106-171136.jpg delete mode 100644 ziffer_sortiert_raw/7_dig6_20220222-215933.jpg delete mode 100644 ziffer_sortiert_raw/7_dig8_20220627-222615.jpg delete mode 100644 ziffer_sortiert_raw/7_dig9_20220627-191707.jpg delete mode 100644 ziffer_sortiert_raw/7_digit7_073420.jpg delete mode 100644 ziffer_sortiert_raw/8_1.jpg delete mode 100644 ziffer_sortiert_raw/8_20200816-094909_digit5.jpg delete mode 100644 ziffer_sortiert_raw/8_2_20220211.jpg delete mode 100644 ziffer_sortiert_raw/8_8_dig1_20210628-183404.jpg delete mode 100644 ziffer_sortiert_raw/8_dig4_20220108-203536.jpg delete mode 100644 ziffer_sortiert_raw/8_dig4_20220108-204027.jpg delete mode 100644 ziffer_sortiert_raw/8_dig5_20220106-060123 (2).jpg delete mode 100644 ziffer_sortiert_raw/8_dig7_20220627-184801.jpg delete mode 100644 ziffer_sortiert_raw/8_kuehlung_22_20221030-205507.jpg delete mode 100644 ziffer_sortiert_raw/8_kuehlung_22_20221103-072050.jpg delete mode 100644 ziffer_sortiert_raw/8_wassertemperatur_dec2_20221119-195826.jpg delete mode 100644 ziffer_sortiert_raw/8_ziffer4_2019-11-01_06-37-35.jpg delete mode 100644 ziffer_sortiert_raw/9.0_dig5_20210926-143749.jpg delete mode 100644 ziffer_sortiert_raw/9_0_ht3_20210629-071741.jpg delete mode 100644 ziffer_sortiert_raw/9_25057.jpg delete mode 100644 ziffer_sortiert_raw/9_2_20220211.jpg delete mode 100644 ziffer_sortiert_raw/9_41.jpg delete mode 100644 ziffer_sortiert_raw/9_8_ht3_20210625-211611.jpg delete mode 100644 ziffer_sortiert_raw/9_9_ht3_20210625-172813.jpg delete mode 100644 ziffer_sortiert_raw/9_9_ht3_20210626-085542.jpg delete mode 100644 ziffer_sortiert_raw/9_9_ht3_20210626-171115.jpg delete mode 100644 ziffer_sortiert_raw/9_9_ht3_20210629-053102.jpg delete mode 100644 ziffer_sortiert_raw/9_c33d078f5bdf3f8511f53d7bbb847249.jpg delete mode 100644 ziffer_sortiert_raw/9_dig4_19700109-004128.jpg delete mode 100644 ziffer_sortiert_raw/9_dig4_20220109-121223.jpg delete mode 100644 ziffer_sortiert_raw/9_dig5_20220310-020847.jpg delete mode 100644 ziffer_sortiert_raw/9_dig8_20220627-185252.jpg delete mode 100644 ziffer_sortiert_raw/9_waerme_5_20221101-210036.jpg delete mode 100644 ziffer_sortiert_raw/9_wassertemperatur_dec2_20221120-132224.jpg delete mode 100644 ziffer_sortiert_raw/NaN_0_nt7_20210627-222846.jpg delete mode 100644 ziffer_sortiert_raw/NaN_10_ROI2_20210225-114748.jpg delete mode 100644 ziffer_sortiert_raw/NaN_10_digit8_20210406-160257.jpg delete mode 100644 ziffer_sortiert_raw/NaN_10_ht6_20210629-015737.jpg delete mode 100644 ziffer_sortiert_raw/NaN_20200814-004435_digit3.jpg delete mode 100644 ziffer_sortiert_raw/NaN_20200814-015636_digit3.jpg delete mode 100644 ziffer_sortiert_raw/NaN_20200814-034016_digit3.jpg delete mode 100644 ziffer_sortiert_raw/NaN_20200814-062224_digit3.jpg delete mode 100644 ziffer_sortiert_raw/NaN_20200814-063206_digit3.jpg delete mode 100644 ziffer_sortiert_raw/NaN_20200912-044544_ROI5.jpg delete mode 100644 ziffer_sortiert_raw/NaN_2815.jpg delete mode 100644 ziffer_sortiert_raw/NaN_2_ROI3_20210309-072539.jpg delete mode 100644 ziffer_sortiert_raw/NaN_2_ROI3_20210309-093538.jpg delete mode 100644 ziffer_sortiert_raw/NaN_3_ROI3_20210506-070557.jpg delete mode 100644 ziffer_sortiert_raw/NaN_3f_7_digit7_20210406-133800.jpg delete mode 100644 ziffer_sortiert_raw/NaN_3f_7_digit7_20210406-134251.jpg delete mode 100644 ziffer_sortiert_raw/NaN_4_dig6_20210726-040341.jpg delete mode 100644 ziffer_sortiert_raw/NaN_4_digit7_20210406-160257.jpg delete mode 100644 ziffer_sortiert_raw/NaN_4_digit8_20210406-114831.jpg delete mode 100644 ziffer_sortiert_raw/NaN_4_digit8_20210406-115029.jpg delete mode 100644 ziffer_sortiert_raw/NaN_5_dig6_20210629-140209.jpg delete mode 100644 ziffer_sortiert_raw/NaN_6_dig6_20210629-091808.jpg delete mode 100644 ziffer_sortiert_raw/NaN_7_dig3_20210704-150201.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-13_14-35-22.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-14_13-31-10.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-14_14-03-49.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-15_14-04-25.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-16_02-14-25.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-16_14-20-45.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-17_12-24-48.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-17_12-53-57.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_10-08-28.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_10-09-02.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_13-30-55.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_13-35-30.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_13-53-57.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_16-23-23.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-20_16-53-26.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-22_03-49-58.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-22_04-19-57.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-22_06-19-40.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-22_19-20-10.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-24_12-44-07.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-24_19-14-45.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-24_19-44-43.jpg delete mode 100644 ziffer_sortiert_raw/NaN_D8_2020-08-25_09-44-49.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_0198.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_0590.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_0693.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_0804.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_0891.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1256.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1257.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1259.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1266.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1269.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1271.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1273.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1274.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1277.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1278.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1281.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1283.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_1284.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_2212.jpg delete mode 100644 ziffer_sortiert_raw/NaN_Ziffer_NaN_3451.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit7_360610.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit8_213207.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit8_292900.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit8_350211.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit8_503821.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit8_534307.jpg delete mode 100644 ziffer_sortiert_raw/NaN_digit8_571722.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_11-20-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_11-30-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_11-40-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_11-50-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_12-00-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_12-10-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_12-20-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_12-30-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_12-40-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_12-50-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-04-16_13-00-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer1_2020-05-02_07-40-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-22-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-27-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-32-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-37-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-42-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-47-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-52-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_13-57-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_14-02-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_14-07-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2019-11-25_14-12-52.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-04-25_09-30-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-04-25_10-00-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-04-25_10-30-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-04-25_10-50-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-02_11-00-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-09_04-20-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-09_05-58-03.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-09_06-00-07.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-11_08-10-07.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-13_23-50-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-14_03-00-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-16_02-00-07.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-16_05-40-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-16_05-50-06.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-16_06-05-08.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-18_02-00-23.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-18_04-10-09.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-19_19-40-14.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-20_00-50-13.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-20_03-10-13.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-20_05-50-14.jpg delete mode 100644 ziffer_sortiert_raw/NaN_ziffer5_2020-05-24_16-40-14.jpg delete mode 100644 ziffer_sortiert_resize/0 - 0_1_20211231-092401.jpg delete mode 100644 ziffer_sortiert_resize/0.0_dig1_20211007-142923.jpg delete mode 100644 ziffer_sortiert_resize/0_0_digit1_20210323-194921.jpg delete mode 100644 ziffer_sortiert_resize/0_0_digit2_20210422-161722.jpg delete mode 100644 ziffer_sortiert_resize/0_0_digit3_20210406-114340.jpg delete mode 100644 ziffer_sortiert_resize/0_0_nt5_20210625-192438.jpg delete mode 100644 ziffer_sortiert_resize/0_1_ht5_20210626-092329.jpg delete mode 100644 ziffer_sortiert_resize/0_3_ht1_20210705-044841.jpg delete mode 100644 ziffer_sortiert_resize/0_7_nt5_20210627-214025.jpg delete mode 100644 ziffer_sortiert_resize/0_8_ht1_20210625-211611.jpg delete mode 100644 ziffer_sortiert_resize/0_8_ht5_20210625-211611.jpg delete mode 100644 ziffer_sortiert_resize/0_8_nt5_20210625-211611.jpg delete mode 100644 ziffer_sortiert_resize/0_Ziffer_0_0019.jpg delete mode 100644 ziffer_sortiert_resize/0_dig1_20220109-120732.jpg delete mode 100644 ziffer_sortiert_resize/0_dig1_20220109-121223.jpg delete mode 100644 ziffer_sortiert_resize/0_dig6_20220109-081443.jpg delete mode 100644 ziffer_sortiert_resize/0_warmwasser_44_20221030-082008.jpg delete mode 100644 ziffer_sortiert_resize/0_warmwasser_66_20221103-204548.jpg delete mode 100644 ziffer_sortiert_resize/0_wassertemperatur_dec2_20221120134324.jpg delete mode 100644 ziffer_sortiert_resize/0_ziffer1_2019-11-24_08-22-52.jpg delete mode 100644 ziffer_sortiert_resize/1-10_4_20220102-144242.jpg delete mode 100644 ziffer_sortiert_resize/1_1_20220211.jpg delete mode 100644 ziffer_sortiert_resize/1_1_ROI5_20210309-072539.jpg delete mode 100644 ziffer_sortiert_resize/1_1_digit3_20210315-230740.jpg delete mode 100644 ziffer_sortiert_resize/1_1_ht2_20210626-090405.jpg delete mode 100644 ziffer_sortiert_resize/1_1_ht2_20210629-005435.jpg delete mode 100644 ziffer_sortiert_resize/1_1_ht7_20210626-121031.jpg delete mode 100644 ziffer_sortiert_resize/1_1_nt2_20210626-090405.jpg delete mode 100644 ziffer_sortiert_resize/1_1_nt2_20210626-090856.jpg delete mode 100644 ziffer_sortiert_resize/1_2_20220211.jpg delete mode 100644 ziffer_sortiert_resize/1_8_nt4_20210625-211611.jpg delete mode 100644 ziffer_sortiert_resize/1_dig1_20220725-020202.jpg delete mode 100644 ziffer_sortiert_resize/1_dig3_20220629-061155.jpg delete mode 100644 ziffer_sortiert_resize/1_dig8_20220627-194122.jpg delete mode 100644 ziffer_sortiert_resize/1_waerme_6_20221031-112301.jpg delete mode 100644 ziffer_sortiert_resize/1_ziffer5_2019-10-26_11-58-57.jpg delete mode 100644 ziffer_sortiert_resize/1_ziffer5_2020-04-17_14-42-54.jpg delete mode 100644 ziffer_sortiert_resize/2.0_dig3_20211014-213529.jpg delete mode 100644 ziffer_sortiert_resize/2_10_ROI2_20210225-023326.jpg delete mode 100644 ziffer_sortiert_resize/2_10_ROI2_20210225-053804.jpg delete mode 100644 ziffer_sortiert_resize/2_10_ROI2_20210225-083323.jpg delete mode 100644 ziffer_sortiert_resize/2_2.jpg delete mode 100644 ziffer_sortiert_resize/2_23654.jpg delete mode 100644 ziffer_sortiert_resize/2_2_20220211.jpg delete mode 100644 ziffer_sortiert_resize/2_2_ROI2_20210224-233751.jpg delete mode 100644 ziffer_sortiert_resize/2_2_ROI2_20210225-060710.jpg delete mode 100644 ziffer_sortiert_resize/2_2_ROI2_20210225-064128.jpg delete mode 100644 ziffer_sortiert_resize/2_2_ROI3_20210424-160317.jpg delete mode 100644 ziffer_sortiert_resize/2_2_dig5_20210629-181611.jpg delete mode 100644 ziffer_sortiert_resize/2_2_digit3_20210320-014308.jpg delete mode 100644 ziffer_sortiert_resize/2_2_ht6_20210626-093311.jpg delete mode 100644 ziffer_sortiert_resize/2_dig3_20220109-123147.jpg delete mode 100644 ziffer_sortiert_resize/2_dig8_20220627-190725.jpg delete mode 100644 ziffer_sortiert_resize/2_red1_19700109-105856.jpg delete mode 100644 ziffer_sortiert_resize/2_wassertemperatur_dec2_20221120-141324.jpg delete mode 100644 ziffer_sortiert_resize/2_ziffer3_2019-11-24_08-32-52.jpg delete mode 100644 ziffer_sortiert_resize/3-7_7_20211231-082402.jpg delete mode 100644 ziffer_sortiert_resize/3_11.jpg delete mode 100644 ziffer_sortiert_resize/3_31.jpg delete mode 100644 ziffer_sortiert_resize/3_3_ROI4_20210316-171213.jpg delete mode 100644 ziffer_sortiert_resize/3_3_dig2_20210628-183804.jpg delete mode 100644 ziffer_sortiert_resize/3_3_dig2_20210628-221205.jpg delete mode 100644 ziffer_sortiert_resize/3_5_dig5_20210629-184812.jpg delete mode 100644 ziffer_sortiert_resize/3_8e8af8f18fce9dfdc3f560597674748f.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210628-182804.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210629-143210.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210629-181211.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210629-201116.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210629-202916.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210629-213437.jpg delete mode 100644 ziffer_sortiert_resize/3_9_dig2_20210629-215437.jpg delete mode 100644 ziffer_sortiert_resize/3_dig3_20220419-110524.jpg delete mode 100644 ziffer_sortiert_resize/3_digit3_20210816-132705.jpg delete mode 100644 ziffer_sortiert_resize/3_wassertemperatur_dec2_20221120-150123.jpg delete mode 100644 ziffer_sortiert_resize/4 -4_3_20211231-094402.jpg delete mode 100644 ziffer_sortiert_resize/4-1_3_20211231-120401.jpg delete mode 100644 ziffer_sortiert_resize/4_0_ht6_20210627-222846.jpg delete mode 100644 ziffer_sortiert_resize/4_1_ht6_20210627-202210.jpg delete mode 100644 ziffer_sortiert_resize/4_26142.jpg delete mode 100644 ziffer_sortiert_resize/4_4_ROI4_20210308-222020.jpg delete mode 100644 ziffer_sortiert_resize/4_4_dig5_20210629-202316.jpg delete mode 100644 ziffer_sortiert_resize/4_4_ht6_20210626-191722.jpg delete mode 100644 ziffer_sortiert_resize/4_805e1ac0528dc20138db30bc8ad061d8.jpg delete mode 100644 ziffer_sortiert_resize/4_dig1_20220725-200205.jpg delete mode 100644 ziffer_sortiert_resize/4_dig5_20220409-050651.jpg delete mode 100644 ziffer_sortiert_resize/4_dig8_20220627-201028.jpg delete mode 100644 ziffer_sortiert_resize/4_dig9_20220627-194613.jpg delete mode 100644 ziffer_sortiert_resize/4_waerme_5_20221030-064008.jpg delete mode 100644 ziffer_sortiert_resize/4_waerme_5_20221030-081008.jpg delete mode 100644 ziffer_sortiert_resize/5_0f2eb48a7067c123e6fd1c65d6f68b6a.jpg delete mode 100644 ziffer_sortiert_resize/5_5_ROI3_20210315-220240.jpg delete mode 100644 ziffer_sortiert_resize/5_5_ROI3_20210320-014808.jpg delete mode 100644 ziffer_sortiert_resize/5_5_dig5_20210628-183204.jpg delete mode 100644 ziffer_sortiert_resize/5_5_digit7_20210526-100757.jpg delete mode 100644 ziffer_sortiert_resize/5_5_nt3_20210625-175228.jpg delete mode 100644 ziffer_sortiert_resize/5_dig3_20220629-040655.jpg delete mode 100644 ziffer_sortiert_resize/5_dig5_20220413-000819.jpg delete mode 100644 ziffer_sortiert_resize/6-1.jpg delete mode 100644 ziffer_sortiert_resize/6.0_dig5_20210923-091656.jpg delete mode 100644 ziffer_sortiert_resize/6_6_ROI4_20210419-105812.jpg delete mode 100644 ziffer_sortiert_resize/6_dig5b_19700109-105449.jpg delete mode 100644 ziffer_sortiert_resize/6_dig6_20220102-215020.jpg delete mode 100644 ziffer_sortiert_resize/6_wassertemperatur_dec2_20221119-183727.jpg delete mode 100644 ziffer_sortiert_resize/7-1_6_20211231-120401.jpg delete mode 100644 ziffer_sortiert_resize/7.0_dig3_20211005-135251.jpg delete mode 100644 ziffer_sortiert_resize/7.0_dig5_20210923-092147.jpg delete mode 100644 ziffer_sortiert_resize/7_0_dig5_20210629-093808.jpg delete mode 100644 ziffer_sortiert_resize/7_0_dig5_20210629-095608.jpg delete mode 100644 ziffer_sortiert_resize/7_0_dig5_20210629-130409.jpg delete mode 100644 ziffer_sortiert_resize/7_10e7c4f283a7a1b58441be5d4b5ec43d.jpg delete mode 100644 ziffer_sortiert_resize/7_1_20220211.jpg delete mode 100644 ziffer_sortiert_resize/7_1_dig4_20210628-184404.jpg delete mode 100644 ziffer_sortiert_resize/7_2_20220211.jpg delete mode 100644 ziffer_sortiert_resize/7_7_ROI4_20210312-235358.jpg delete mode 100644 ziffer_sortiert_resize/7_7_dig4_20210628-180600.jpg delete mode 100644 ziffer_sortiert_resize/7_7_dig4_20210628-183604.jpg delete mode 100644 ziffer_sortiert_resize/7_7_dig4_20210628-223605.jpg delete mode 100644 ziffer_sortiert_resize/7_7_dig5_20210730-182850.jpg delete mode 100644 ziffer_sortiert_resize/7_7_nt6_20210626-043348.jpg delete mode 100644 ziffer_sortiert_resize/7_dig5_20220106-034509.jpg delete mode 100644 ziffer_sortiert_resize/7_dig6_20220106-171136 (2).jpg delete mode 100644 ziffer_sortiert_resize/7_dig6_20220106-171136.jpg delete mode 100644 ziffer_sortiert_resize/7_dig6_20220222-215933.jpg delete mode 100644 ziffer_sortiert_resize/7_dig8_20220627-222615.jpg delete mode 100644 ziffer_sortiert_resize/7_dig9_20220627-191707.jpg delete mode 100644 ziffer_sortiert_resize/7_digit7_073420.jpg delete mode 100644 ziffer_sortiert_resize/8_1.jpg delete mode 100644 ziffer_sortiert_resize/8_20200816-094909_digit5.jpg delete mode 100644 ziffer_sortiert_resize/8_2_20220211.jpg delete mode 100644 ziffer_sortiert_resize/8_8_dig1_20210628-183404.jpg delete mode 100644 ziffer_sortiert_resize/8_dig4_20220108-203536.jpg delete mode 100644 ziffer_sortiert_resize/8_dig4_20220108-204027.jpg delete mode 100644 ziffer_sortiert_resize/8_dig5_20220106-060123 (2).jpg delete mode 100644 ziffer_sortiert_resize/8_dig7_20220627-184801.jpg delete mode 100644 ziffer_sortiert_resize/8_kuehlung_22_20221030-205507.jpg delete mode 100644 ziffer_sortiert_resize/8_kuehlung_22_20221103-072050.jpg delete mode 100644 ziffer_sortiert_resize/8_wassertemperatur_dec2_20221119-195826.jpg delete mode 100644 ziffer_sortiert_resize/8_ziffer4_2019-11-01_06-37-35.jpg delete mode 100644 ziffer_sortiert_resize/9.0_dig5_20210926-143749.jpg delete mode 100644 ziffer_sortiert_resize/9_0_ht3_20210629-071741.jpg delete mode 100644 ziffer_sortiert_resize/9_25057.jpg delete mode 100644 ziffer_sortiert_resize/9_2_20220211.jpg delete mode 100644 ziffer_sortiert_resize/9_41.jpg delete mode 100644 ziffer_sortiert_resize/9_8_ht3_20210625-211611.jpg delete mode 100644 ziffer_sortiert_resize/9_9_ht3_20210625-172813.jpg delete mode 100644 ziffer_sortiert_resize/9_9_ht3_20210626-085542.jpg delete mode 100644 ziffer_sortiert_resize/9_9_ht3_20210626-171115.jpg delete mode 100644 ziffer_sortiert_resize/9_9_ht3_20210629-053102.jpg delete mode 100644 ziffer_sortiert_resize/9_c33d078f5bdf3f8511f53d7bbb847249.jpg delete mode 100644 ziffer_sortiert_resize/9_dig4_19700109-004128.jpg delete mode 100644 ziffer_sortiert_resize/9_dig4_20220109-121223.jpg delete mode 100644 ziffer_sortiert_resize/9_dig5_20220310-020847.jpg delete mode 100644 ziffer_sortiert_resize/9_dig8_20220627-185252.jpg delete mode 100644 ziffer_sortiert_resize/9_waerme_5_20221101-210036.jpg delete mode 100644 ziffer_sortiert_resize/9_wassertemperatur_dec2_20221120-132224.jpg delete mode 100644 ziffer_sortiert_resize/NaN_0_nt7_20210627-222846.jpg delete mode 100644 ziffer_sortiert_resize/NaN_10_ROI2_20210225-114748.jpg delete mode 100644 ziffer_sortiert_resize/NaN_10_digit8_20210406-160257.jpg delete mode 100644 ziffer_sortiert_resize/NaN_10_ht6_20210629-015737.jpg delete mode 100644 ziffer_sortiert_resize/NaN_20200814-004435_digit3.jpg delete mode 100644 ziffer_sortiert_resize/NaN_20200814-015636_digit3.jpg delete mode 100644 ziffer_sortiert_resize/NaN_20200814-034016_digit3.jpg delete mode 100644 ziffer_sortiert_resize/NaN_20200814-062224_digit3.jpg delete mode 100644 ziffer_sortiert_resize/NaN_20200814-063206_digit3.jpg delete mode 100644 ziffer_sortiert_resize/NaN_20200912-044544_ROI5.jpg delete mode 100644 ziffer_sortiert_resize/NaN_2815.jpg delete mode 100644 ziffer_sortiert_resize/NaN_2_ROI3_20210309-072539.jpg delete mode 100644 ziffer_sortiert_resize/NaN_2_ROI3_20210309-093538.jpg delete mode 100644 ziffer_sortiert_resize/NaN_3_ROI3_20210506-070557.jpg delete mode 100644 ziffer_sortiert_resize/NaN_3f_7_digit7_20210406-133800.jpg delete mode 100644 ziffer_sortiert_resize/NaN_3f_7_digit7_20210406-134251.jpg delete mode 100644 ziffer_sortiert_resize/NaN_4_dig6_20210726-040341.jpg delete mode 100644 ziffer_sortiert_resize/NaN_4_digit7_20210406-160257.jpg delete mode 100644 ziffer_sortiert_resize/NaN_4_digit8_20210406-114831.jpg delete mode 100644 ziffer_sortiert_resize/NaN_4_digit8_20210406-115029.jpg delete mode 100644 ziffer_sortiert_resize/NaN_5_dig6_20210629-140209.jpg delete mode 100644 ziffer_sortiert_resize/NaN_6_dig6_20210629-091808.jpg delete mode 100644 ziffer_sortiert_resize/NaN_7_dig3_20210704-150201.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-13_14-35-22.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-14_13-31-10.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-14_14-03-49.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-15_14-04-25.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-16_02-14-25.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-16_14-20-45.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-17_12-24-48.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-17_12-53-57.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_10-08-28.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_10-09-02.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_13-30-55.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_13-35-30.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_13-53-57.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_16-23-23.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-20_16-53-26.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-22_03-49-58.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-22_04-19-57.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-22_06-19-40.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-22_19-20-10.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-24_12-44-07.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-24_19-14-45.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-24_19-44-43.jpg delete mode 100644 ziffer_sortiert_resize/NaN_D8_2020-08-25_09-44-49.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_0198.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_0590.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_0693.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_0804.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_0891.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1256.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1257.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1259.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1266.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1269.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1271.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1273.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1274.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1277.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1278.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1281.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1283.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_1284.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_2212.jpg delete mode 100644 ziffer_sortiert_resize/NaN_Ziffer_NaN_3451.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit7_360610.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit8_213207.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit8_292900.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit8_350211.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit8_503821.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit8_534307.jpg delete mode 100644 ziffer_sortiert_resize/NaN_digit8_571722.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_11-20-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_11-30-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_11-40-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_11-50-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_12-00-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_12-10-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_12-20-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_12-30-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_12-40-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_12-50-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-04-16_13-00-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer1_2020-05-02_07-40-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-22-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-27-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-32-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-37-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-42-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-47-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-52-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_13-57-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_14-02-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_14-07-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2019-11-25_14-12-52.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-04-25_09-30-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-04-25_10-00-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-04-25_10-30-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-04-25_10-50-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-02_11-00-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-09_04-20-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-09_05-58-03.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-09_06-00-07.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-11_08-10-07.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-13_23-50-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-14_03-00-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-16_02-00-07.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-16_05-40-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-16_05-50-06.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-16_06-05-08.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-18_02-00-23.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-18_04-10-09.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-19_19-40-14.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-20_00-50-13.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-20_03-10-13.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-20_05-50-14.jpg delete mode 100644 ziffer_sortiert_resize/NaN_ziffer5_2020-05-24_16-40-14.jpg diff --git a/.ipynb_checkpoints/Train_CNN_Digital-Readout-Small-v2-checkpoint.ipynb b/.ipynb_checkpoints/Train_CNN_Digital-Readout-Small-v2-checkpoint.ipynb index 9577537cb..6ff0c90bd 100644 --- a/.ipynb_checkpoints/Train_CNN_Digital-Readout-Small-v2-checkpoint.ipynb +++ b/.ipynb_checkpoints/Train_CNN_Digital-Readout-Small-v2-checkpoint.ipynb @@ -24,7 +24,7 @@ "source": [ "########### Basic Parameters for Running: ################################\n", " \n", - "TFlite_Version = \"1701\" \n", + "TFlite_Version = \"1800\" \n", "TFlite_MainType = \"dig-class11\"\n", "TFlite_Size = \"s2\"\n", "Training_Percentage = 0.0 # 0.0 = Use all Images for Training\n", @@ -32,6 +32,8 @@ "\n", "##########################################################################\n", "\n", + "## 2024-03-30: Code adapted to TF 2.16 ###################################\n", + "\n", "\n", "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", @@ -82,8 +84,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "(1573, 32, 20, 3)\n", - "(1573, 11)\n" + "(1300, 32, 20, 3)\n", + "(1300, 11)\n" ] } ], @@ -141,45 +143,119 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"model\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " input_1 (InputLayer) [(None, 32, 20, 3)] 0 \n", - " \n", - " batch_normalization (BatchN (None, 32, 20, 3) 12 \n", - " ormalization) \n", - " \n", - " conv2d (Conv2D) (None, 32, 20, 32) 896 \n", - " \n", - " max_pooling2d (MaxPooling2D (None, 16, 10, 32) 0 \n", - " ) \n", - " \n", - " conv2d_1 (Conv2D) (None, 16, 10, 32) 9248 \n", - " \n", - " max_pooling2d_1 (MaxPooling (None, 8, 5, 32) 0 \n", - " 2D) \n", - " \n", - " conv2d_2 (Conv2D) (None, 8, 5, 32) 9248 \n", - " \n", - " max_pooling2d_2 (MaxPooling (None, 4, 2, 32) 0 \n", - " 2D) \n", - " \n", - " flatten (Flatten) (None, 256) 0 \n", - " \n", - " dense (Dense) (None, 256) 65792 \n", - " \n", - " dense_1 (Dense) (None, 11) 2827 \n", - " \n", - "=================================================================\n", - "Total params: 88,023\n", - "Trainable params: 88,017\n", - "Non-trainable params: 6\n", - "_________________________________________________________________\n" - ] + "data": { + "text/html": [ + "
Model: \"functional_1\"\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1mModel: \"functional_1\"\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┓\n", + "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n", + "┡â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┩\n", + "│ input_layer (InputLayer) │ (None, 32, 20, 3) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization │ (None, 32, 20, 3) │ 12 │\n", + "│ (BatchNormalization) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d (Conv2D) │ (None, 32, 20, 32) │ 896 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d (MaxPooling2D) │ (None, 16, 10, 32) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_1 (Conv2D) │ (None, 16, 10, 32) │ 9,248 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_1 (MaxPooling2D) │ (None, 8, 5, 32) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_2 (Conv2D) │ (None, 8, 5, 32) │ 9,248 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_2 (MaxPooling2D) │ (None, 4, 2, 32) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten (Flatten) │ (None, 256) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (Dense) │ (None, 256) │ 65,792 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (Dense) │ (None, 11) │ 2,827 │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n", + "\n" + ], + "text/plain": [ + "â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┩\n", + "│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m12\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m65,792\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m) │ \u001b[38;5;34m2,827\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Total params: 88,023 (343.84 KB)\n", + "\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m88,023\u001b[0m (343.84 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Trainable params: 88,017 (343.82 KB)\n", + "\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m88,017\u001b[0m (343.82 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Non-trainable params: 6 (24.00 B)\n", + "\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m6\u001b[0m (24.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -238,1005 +314,1020 @@ "output_type": "stream", "text": [ "Epoch 1/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 2.1516 - accuracy: 0.3223\n", + "\u001b[1m 51/325\u001b[0m \u001b[32mâ”â”â”\u001b[0m\u001b[37mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.2469 - loss: 2.3019" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Muell\\anaconda3\\envs\\py311-tf216-opencv\\Lib\\site-packages\\keras\\src\\trainers\\data_adapters\\py_dataset_adapter.py:120: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 3ms/step - accuracy: 0.2822 - loss: 2.2734\n", "Epoch 2/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 1.4881 - accuracy: 0.5226\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.3882 - loss: 1.8318\n", "Epoch 3/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.9700 - accuracy: 0.6910\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.5754 - loss: 1.2654\n", "Epoch 4/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.8070 - accuracy: 0.7451\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7161 - loss: 0.8801\n", "Epoch 5/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.6602 - accuracy: 0.7991\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7768 - loss: 0.7268\n", "Epoch 6/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.5955 - accuracy: 0.8258\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8277 - loss: 0.6434\n", "Epoch 7/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.5233 - accuracy: 0.8474\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8044 - loss: 0.6498\n", "Epoch 8/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.4445 - accuracy: 0.8652\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8499 - loss: 0.4638\n", "Epoch 9/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.4406 - accuracy: 0.8735\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8493 - loss: 0.5074\n", "Epoch 10/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.4012 - accuracy: 0.8887\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8727 - loss: 0.4695\n", "Epoch 11/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3693 - accuracy: 0.8900\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8885 - loss: 0.3451\n", "Epoch 12/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3075 - accuracy: 0.9142\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8832 - loss: 0.4054\n", "Epoch 13/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3734 - accuracy: 0.8964\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8786 - loss: 0.4139\n", "Epoch 14/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3359 - accuracy: 0.9053\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8955 - loss: 0.4001\n", "Epoch 15/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3208 - accuracy: 0.9027\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8891 - loss: 0.3343\n", "Epoch 16/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2705 - accuracy: 0.9256\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8960 - loss: 0.3246\n", "Epoch 17/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2488 - accuracy: 0.9186\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9061 - loss: 0.2965\n", "Epoch 18/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2749 - accuracy: 0.9199\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9290 - loss: 0.2852\n", "Epoch 19/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2611 - accuracy: 0.9193\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9288 - loss: 0.2614\n", "Epoch 20/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2224 - accuracy: 0.9193\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9309 - loss: 0.2214\n", "Epoch 21/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2185 - accuracy: 0.9421\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9427 - loss: 0.2345\n", "Epoch 22/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2420 - accuracy: 0.9224\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9179 - loss: 0.2504\n", "Epoch 23/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2117 - accuracy: 0.9307\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9116 - loss: 0.2614\n", "Epoch 24/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2134 - accuracy: 0.9358\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9420 - loss: 0.2213\n", "Epoch 25/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2233 - accuracy: 0.9402\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9414 - loss: 0.2223\n", "Epoch 26/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2151 - accuracy: 0.9307\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9513 - loss: 0.1700\n", "Epoch 27/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2009 - accuracy: 0.9421\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9464 - loss: 0.1881\n", "Epoch 28/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1893 - accuracy: 0.9390\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9527 - loss: 0.1516\n", "Epoch 29/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1961 - accuracy: 0.9415\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9351 - loss: 0.2181\n", "Epoch 30/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1643 - accuracy: 0.9555\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9263 - loss: 0.2048\n", "Epoch 31/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1892 - accuracy: 0.9441\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9471 - loss: 0.1739\n", "Epoch 32/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1589 - accuracy: 0.9580\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9500 - loss: 0.1479\n", "Epoch 33/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1582 - accuracy: 0.9593\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9524 - loss: 0.1546\n", "Epoch 34/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1444 - accuracy: 0.9574\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9458 - loss: 0.1731\n", "Epoch 35/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1503 - accuracy: 0.9561\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9478 - loss: 0.1630\n", "Epoch 36/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1485 - accuracy: 0.9549\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9449 - loss: 0.1956\n", "Epoch 37/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1624 - accuracy: 0.9479\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9632 - loss: 0.1049\n", "Epoch 38/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1483 - accuracy: 0.9606\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9583 - loss: 0.1624\n", "Epoch 39/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1401 - accuracy: 0.9593\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9594 - loss: 0.1297\n", "Epoch 40/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1369 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9492 - loss: 0.1808\n", "Epoch 41/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1401 - accuracy: 0.9574\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9674 - loss: 0.1105\n", "Epoch 42/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1526 - accuracy: 0.9574\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9570 - loss: 0.1492\n", "Epoch 43/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1262 - accuracy: 0.9650\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9490 - loss: 0.1594\n", "Epoch 44/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1481 - accuracy: 0.9619\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9455 - loss: 0.1943\n", "Epoch 45/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1159 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9625 - loss: 0.1204\n", "Epoch 46/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1202 - accuracy: 0.9682\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9726 - loss: 0.1119\n", "Epoch 47/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1216 - accuracy: 0.9676\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9699 - loss: 0.1124\n", "Epoch 48/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1354 - accuracy: 0.9657\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9571 - loss: 0.1533\n", "Epoch 49/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1233 - accuracy: 0.9695\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9654 - loss: 0.1261\n", "Epoch 50/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1466 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9631 - loss: 0.0931\n", "Epoch 51/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1297 - accuracy: 0.9612\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9644 - loss: 0.1255\n", "Epoch 52/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1217 - accuracy: 0.9657\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9533 - loss: 0.1915\n", "Epoch 53/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1005 - accuracy: 0.9739\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9569 - loss: 0.1536\n", "Epoch 54/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.1320 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9621 - loss: 0.1049\n", "Epoch 55/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1289 - accuracy: 0.9688\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9600 - loss: 0.1669\n", "Epoch 56/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1170 - accuracy: 0.9669\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9625 - loss: 0.1000\n", "Epoch 57/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1026 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9649 - loss: 0.1221\n", "Epoch 58/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0860 - accuracy: 0.9695\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9765 - loss: 0.1004\n", "Epoch 59/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1186 - accuracy: 0.9701\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9625 - loss: 0.1121\n", "Epoch 60/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1105 - accuracy: 0.9638\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9665 - loss: 0.1569\n", "Epoch 61/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1149 - accuracy: 0.9733\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9573 - loss: 0.1140\n", "Epoch 62/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1056 - accuracy: 0.9727\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9641 - loss: 0.1098\n", "Epoch 63/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1295 - accuracy: 0.9682\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9670 - loss: 0.1083\n", "Epoch 64/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1250 - accuracy: 0.9663\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9679 - loss: 0.1169\n", "Epoch 65/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1071 - accuracy: 0.9688\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9679 - loss: 0.1274\n", "Epoch 66/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1257 - accuracy: 0.9663\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9619 - loss: 0.1143\n", "Epoch 67/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0856 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9820 - loss: 0.0762\n", "Epoch 68/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0971 - accuracy: 0.9714\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9714 - loss: 0.0866\n", "Epoch 69/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0976 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9667 - loss: 0.1239\n", "Epoch 70/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0914 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9678 - loss: 0.0995\n", "Epoch 71/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1237 - accuracy: 0.9714\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0672\n", "Epoch 72/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0837 - accuracy: 0.9727\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9728 - loss: 0.0884\n", "Epoch 73/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0857 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.0835\n", "Epoch 74/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0881 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9714 - loss: 0.0934\n", "Epoch 75/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0782 - accuracy: 0.9790\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9779 - loss: 0.1212\n", "Epoch 76/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0760 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9759 - loss: 0.0924\n", "Epoch 77/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1479 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0785\n", "Epoch 78/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0786 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9685 - loss: 0.0851\n", "Epoch 79/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1087 - accuracy: 0.9695\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9618 - loss: 0.1137\n", "Epoch 80/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1014 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9792 - loss: 0.1020\n", "Epoch 81/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1142 - accuracy: 0.9663\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9775 - loss: 0.0788\n", "Epoch 82/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0923 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9776 - loss: 0.0670\n", "Epoch 83/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0820 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9563 - loss: 0.1152\n", "Epoch 84/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0893 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9821 - loss: 0.0509\n", "Epoch 85/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1339 - accuracy: 0.9676\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9719 - loss: 0.0951\n", "Epoch 86/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0833 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9641 - loss: 0.1079\n", "Epoch 87/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0780 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9648 - loss: 0.1229\n", "Epoch 88/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0935 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9736 - loss: 0.0691\n", "Epoch 89/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0898 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9742 - loss: 0.0900\n", "Epoch 90/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0911 - accuracy: 0.9727\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9813 - loss: 0.0680\n", "Epoch 91/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0625 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9793 - loss: 0.0672\n", "Epoch 92/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0563 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9744 - loss: 0.0710\n", "Epoch 93/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0951 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9779 - loss: 0.0737\n", "Epoch 94/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9784 - loss: 0.0703\n", "Epoch 95/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0662 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9869 - loss: 0.0424\n", "Epoch 96/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9776 - loss: 0.0881\n", "Epoch 97/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0724 - accuracy: 0.9803\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9713 - loss: 0.1001\n", "Epoch 98/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0984 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0472\n", "Epoch 99/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0743 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9789 - loss: 0.1111\n", "Epoch 100/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0909 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0586\n", "Epoch 101/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0688 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9805 - loss: 0.0892\n", "Epoch 102/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0929 - accuracy: 0.9739\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9857 - loss: 0.0545\n", "Epoch 103/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0740 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9765 - loss: 0.0870\n", "Epoch 104/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0888 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.0764\n", "Epoch 105/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0670 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9842 - loss: 0.0491\n", "Epoch 106/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0800 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9714 - loss: 0.1157\n", "Epoch 107/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0834 - accuracy: 0.9790\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9872 - loss: 0.0501\n", "Epoch 108/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0586 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9736 - loss: 0.1021\n", "Epoch 109/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9790\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0487\n", "Epoch 110/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0701 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9844 - loss: 0.0568\n", "Epoch 111/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0799 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9752 - loss: 0.0872\n", "Epoch 112/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0934 - accuracy: 0.9733\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9765 - loss: 0.0811\n", "Epoch 113/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0422 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9763 - loss: 0.0715\n", "Epoch 114/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1159 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9837 - loss: 0.0581\n", "Epoch 115/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9799 - loss: 0.0676\n", "Epoch 116/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1053 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9662 - loss: 0.1312\n", "Epoch 117/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0595 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9838 - loss: 0.0620\n", "Epoch 118/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1004 - accuracy: 0.9688\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9795 - loss: 0.1159\n", "Epoch 119/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0747 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.0916\n", "Epoch 120/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0942 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9832 - loss: 0.0775\n", "Epoch 121/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0587 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9797 - loss: 0.0498\n", "Epoch 122/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0854 - accuracy: 0.9714\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9726 - loss: 0.1010\n", "Epoch 123/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0796 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9843 - loss: 0.0592\n", "Epoch 124/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0968 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9820 - loss: 0.0797\n", "Epoch 125/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0523 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.1152\n", "Epoch 126/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0764 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9671 - loss: 0.0974\n", "Epoch 127/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9861 - loss: 0.0412\n", "Epoch 128/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0448 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0762\n", "Epoch 129/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0925 - accuracy: 0.9708\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9810 - loss: 0.0423\n", "Epoch 130/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0692 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9835 - loss: 0.0628\n", "Epoch 131/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0958 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9783 - loss: 0.0911\n", "Epoch 132/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0657 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9754 - loss: 0.0995\n", "Epoch 133/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0485 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9752 - loss: 0.0862\n", "Epoch 134/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0846 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9716 - loss: 0.0907\n", "Epoch 135/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0726 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9875 - loss: 0.0420\n", "Epoch 136/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0643 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0294\n", "Epoch 137/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0925 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9842 - loss: 0.0499\n", "Epoch 138/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0575 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9791 - loss: 0.0646\n", "Epoch 139/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0546 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9830 - loss: 0.1075\n", "Epoch 140/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0565 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9739 - loss: 0.0880\n", "Epoch 141/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1083 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9918 - loss: 0.0302\n", "Epoch 142/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0528 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9813 - loss: 0.0571\n", "Epoch 143/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0743 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0475\n", "Epoch 144/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0753 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9745 - loss: 0.1400\n", "Epoch 145/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0504 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9880 - loss: 0.0385\n", "Epoch 146/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0453 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9795 - loss: 0.0687\n", "Epoch 147/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0463 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9885 - loss: 0.0390\n", "Epoch 148/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0796 - accuracy: 0.9803\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0714\n", "Epoch 149/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0552 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9798 - loss: 0.0580\n", "Epoch 150/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0780 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9887 - loss: 0.0394\n", "Epoch 151/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0662 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9916 - loss: 0.0343\n", "Epoch 152/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0714 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9717 - loss: 0.0886\n", "Epoch 153/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0738\n", "Epoch 154/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0793 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0637\n", "Epoch 155/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9791 - loss: 0.0567\n", "Epoch 156/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0636 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9774 - loss: 0.0991\n", "Epoch 157/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0745 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9786 - loss: 0.0689\n", "Epoch 158/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0616 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0482\n", "Epoch 159/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0360 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9844 - loss: 0.0529\n", "Epoch 160/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0455 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0766\n", "Epoch 161/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0543 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9808 - loss: 0.0686\n", "Epoch 162/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0399 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9723 - loss: 0.1078\n", "Epoch 163/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0493 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9690 - loss: 0.1042\n", "Epoch 164/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0584 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9801 - loss: 0.0804\n", "Epoch 165/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0670 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9921 - loss: 0.0277\n", "Epoch 166/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0614 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9897 - loss: 0.0463\n", "Epoch 167/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0367 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9734 - loss: 0.0863\n", "Epoch 168/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0599 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9757 - loss: 0.0812\n", "Epoch 169/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0718 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9788 - loss: 0.1058\n", "Epoch 170/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0304 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9856 - loss: 0.0552\n", "Epoch 171/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0709 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0404\n", "Epoch 172/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0538 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0462\n", "Epoch 173/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0685 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9846 - loss: 0.0502\n", "Epoch 174/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0771 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9932 - loss: 0.0165\n", "Epoch 175/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0528 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9690 - loss: 0.1168\n", "Epoch 176/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0525 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9848 - loss: 0.0812\n", "Epoch 177/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0911 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0938\n", "Epoch 178/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0511 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9883 - loss: 0.0394\n", "Epoch 179/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0489 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0569\n", "Epoch 180/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0591 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0472\n", "Epoch 181/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0528 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9779 - loss: 0.0783\n", "Epoch 182/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0449 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9910 - loss: 0.0448\n", "Epoch 183/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9819 - loss: 0.0579\n", "Epoch 184/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0346 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9801 - loss: 0.0596\n", "Epoch 185/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0654 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9856 - loss: 0.0533\n", "Epoch 186/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0744 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9877 - loss: 0.0890\n", "Epoch 187/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0420 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0752\n", "Epoch 188/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0794 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9755 - loss: 0.0908\n", "Epoch 189/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0300 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9790 - loss: 0.1057\n", "Epoch 190/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0822 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9906 - loss: 0.0213\n", "Epoch 191/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0395 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9883 - loss: 0.0768\n", "Epoch 192/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0319 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0569\n", "Epoch 193/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0602 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9924 - loss: 0.0350\n", "Epoch 194/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0627 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9900 - loss: 0.0345\n", "Epoch 195/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0511 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9879 - loss: 0.0392\n", "Epoch 196/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0372 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9810 - loss: 0.1056\n", "Epoch 197/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0384 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9809 - loss: 0.0518\n", "Epoch 198/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0575 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9833 - loss: 0.0829\n", "Epoch 199/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0586 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9831 - loss: 0.0737\n", "Epoch 200/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0843 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9811 - loss: 0.0602\n", "Epoch 201/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0584 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9837 - loss: 0.0558\n", "Epoch 202/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0537 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.1004\n", "Epoch 203/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0420 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9880 - loss: 0.0430\n", "Epoch 204/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0667 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9832 - loss: 0.0618\n", "Epoch 205/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0463 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9850 - loss: 0.0480\n", "Epoch 206/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0445 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0667\n", "Epoch 207/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0741 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9865 - loss: 0.0468\n", "Epoch 208/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0559 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0379\n", "Epoch 209/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0523 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9934 - loss: 0.0237\n", "Epoch 210/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0396 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0247\n", "Epoch 211/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0409 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0800\n", "Epoch 212/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0604 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9809 - loss: 0.0913\n", "Epoch 213/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0311 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9905 - loss: 0.0268\n", "Epoch 214/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0606 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9950 - loss: 0.0224\n", "Epoch 215/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0586 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9842 - loss: 0.0853\n", "Epoch 216/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0723 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0475\n", "Epoch 217/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0359 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0626\n", "Epoch 218/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0748 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0343\n", "Epoch 219/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0530 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9887 - loss: 0.0497\n", "Epoch 220/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0674 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9936 - loss: 0.0257\n", "Epoch 221/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0293 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9953 - loss: 0.0221\n", "Epoch 222/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0401 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9825 - loss: 0.0648\n", "Epoch 223/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0420 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9904 - loss: 0.0262\n", "Epoch 224/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0438 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9875 - loss: 0.0401\n", "Epoch 225/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0472 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9906 - loss: 0.0523\n", "Epoch 226/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0799 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9924 - loss: 0.0175\n", "Epoch 227/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0532 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.0624\n", "Epoch 228/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0698 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9874 - loss: 0.0437\n", "Epoch 229/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0452 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9893 - loss: 0.0441\n", "Epoch 230/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0527 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9898 - loss: 0.0422\n", "Epoch 231/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0337 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9826 - loss: 0.0511\n", "Epoch 232/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0469 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9837 - loss: 0.0645\n", "Epoch 233/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0355 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9892 - loss: 0.0389\n", "Epoch 234/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0281 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9828 - loss: 0.0621\n", "Epoch 235/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0309 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9914 - loss: 0.0248\n", "Epoch 236/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0817 - accuracy: 0.9803\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9876 - loss: 0.0304\n", "Epoch 237/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0530 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9879 - loss: 0.0423\n", "Epoch 238/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0437 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9869 - loss: 0.0492\n", "Epoch 239/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0363 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9779 - loss: 0.0580\n", "Epoch 240/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0475 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9851 - loss: 0.0473\n", "Epoch 241/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0234 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0531\n", "Epoch 242/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0483 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9885 - loss: 0.0328\n", "Epoch 243/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0543 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9940 - loss: 0.0214\n", "Epoch 244/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0356 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9826 - loss: 0.0636\n", "Epoch 245/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0577 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9898 - loss: 0.0216\n", "Epoch 246/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0643 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9793 - loss: 0.0660\n", "Epoch 247/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0518 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0356\n", "Epoch 248/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0553 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9913 - loss: 0.0256\n", "Epoch 249/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0447 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0290\n", "Epoch 250/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0438 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9849 - loss: 0.0438\n", "Epoch 251/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0654 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9896 - loss: 0.0583\n", "Epoch 252/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0600 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9806 - loss: 0.1203\n", "Epoch 253/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0378 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9844 - loss: 0.0670\n", "Epoch 254/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0407 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9936 - loss: 0.0278\n", "Epoch 255/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0645 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9867 - loss: 0.0302\n", "Epoch 256/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0378 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9836 - loss: 0.0429\n", "Epoch 257/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0497 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0280\n", "Epoch 258/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0454 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9894 - loss: 0.0426\n", "Epoch 259/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0423 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0653\n", "Epoch 260/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0610 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9887 - loss: 0.0462\n", "Epoch 261/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0366 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0592\n", "Epoch 262/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0396 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9807 - loss: 0.0897\n", "Epoch 263/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0318 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0245\n", "Epoch 264/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0552 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0552\n", "Epoch 265/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0317 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0201\n", "Epoch 266/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0414 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9858 - loss: 0.0557\n", "Epoch 267/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0493 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9916 - loss: 0.0496\n", "Epoch 268/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9894 - loss: 0.0536\n", "Epoch 269/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0695 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9910 - loss: 0.0252\n", "Epoch 270/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0325 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9882 - loss: 0.0514\n", "Epoch 271/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0353 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9930 - loss: 0.0374\n", "Epoch 272/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0782 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0146\n", "Epoch 273/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0462 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.1504\n", "Epoch 274/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0401 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0313\n", "Epoch 275/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0284 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9897 - loss: 0.0372\n", "Epoch 276/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0403 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9886 - loss: 0.0327\n", "Epoch 277/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0545 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9949 - loss: 0.0226\n", "Epoch 278/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0514 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9940 - loss: 0.0254\n", "Epoch 279/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0308 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0423\n", "Epoch 280/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0459 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9912 - loss: 0.0498\n", "Epoch 281/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0490 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9861 - loss: 0.0585\n", "Epoch 282/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0271 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0725\n", "Epoch 283/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0509 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9821 - loss: 0.0624\n", "Epoch 284/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0570 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9941 - loss: 0.0338\n", "Epoch 285/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0388 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9914 - loss: 0.0272\n", "Epoch 286/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0518 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9835 - loss: 0.0731\n", "Epoch 287/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9831 - loss: 0.0728\n", "Epoch 288/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0302 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0281\n", "Epoch 289/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0437 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9833 - loss: 0.0592\n", "Epoch 290/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0414 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9940 - loss: 0.0266\n", "Epoch 291/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0394 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9848 - loss: 0.0428\n", "Epoch 292/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0302 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0495\n", "Epoch 293/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0554 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9879 - loss: 0.0449\n", "Epoch 294/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0884 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9849 - loss: 0.0592\n", "Epoch 295/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0416 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9890 - loss: 0.0433\n", "Epoch 296/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0508 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9951 - loss: 0.0233\n", "Epoch 297/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0648 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9896 - loss: 0.0334\n", "Epoch 298/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0336 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9915 - loss: 0.0258\n", "Epoch 299/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0473 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9851 - loss: 0.0627\n", "Epoch 300/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0524 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0190\n", "Epoch 301/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0460 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9763 - loss: 0.0931\n", "Epoch 302/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0441 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9829 - loss: 0.0692\n", "Epoch 303/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0212 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9852 - loss: 0.0356\n", "Epoch 304/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0462 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0393\n", "Epoch 305/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0221 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9847 - loss: 0.0548\n", "Epoch 306/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0631 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9793 - loss: 0.0820\n", "Epoch 307/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0362 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9917 - loss: 0.0270\n", "Epoch 308/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0692 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9942 - loss: 0.0189\n", "Epoch 309/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0445 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9962 - loss: 0.0088\n", "Epoch 310/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0341 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9910 - loss: 0.0358\n", "Epoch 311/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0399 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9855 - loss: 0.0663\n", "Epoch 312/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0213 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9912 - loss: 0.0225\n", "Epoch 313/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0602 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9910 - loss: 0.0406\n", "Epoch 314/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0537 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9914 - loss: 0.0512\n", "Epoch 315/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0383 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9893 - loss: 0.0391\n", "Epoch 316/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0470 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9872 - loss: 0.0396\n", "Epoch 317/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0328 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9836 - loss: 0.0535\n", "Epoch 318/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0477 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9931 - loss: 0.0408\n", "Epoch 319/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0467 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9823 - loss: 0.0658\n", "Epoch 320/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0295 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9890 - loss: 0.0477\n", "Epoch 321/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0491 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9913 - loss: 0.0209\n", "Epoch 322/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0249 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9883 - loss: 0.0411\n", "Epoch 323/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0489 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9855 - loss: 0.0484\n", "Epoch 324/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0267 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0400\n", "Epoch 325/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0558 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9891 - loss: 0.0526\n", "Epoch 326/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0283 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9801 - loss: 0.0741\n", "Epoch 327/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0409 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0256\n", "Epoch 328/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0260 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0247\n", "Epoch 329/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0492 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9946 - loss: 0.0142\n", "Epoch 330/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0422 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0523\n", "Epoch 331/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0223 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9911 - loss: 0.0438\n", "Epoch 332/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0308 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9948 - loss: 0.0277\n", "Epoch 333/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0409 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9970 - loss: 0.0081\n", "Epoch 334/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0449 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9870 - loss: 0.0370\n", "Epoch 335/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0349 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9846 - loss: 0.0421\n", "Epoch 336/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0550\n", "Epoch 337/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0338 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9904 - loss: 0.0579\n", "Epoch 338/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0432 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0451\n", "Epoch 339/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0527 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9934 - loss: 0.0334\n", "Epoch 340/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9819 - loss: 0.0630\n", "Epoch 341/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0243 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9859 - loss: 0.0384\n", "Epoch 342/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0317 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0580\n", "Epoch 343/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0257 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9910 - loss: 0.0355\n", "Epoch 344/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0401 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9958 - loss: 0.0194\n", "Epoch 345/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0331 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9874 - loss: 0.0323\n", "Epoch 346/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0464 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9907 - loss: 0.0267\n", "Epoch 347/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0348 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0634\n", "Epoch 348/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0445 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0474\n", "Epoch 349/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0292 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9900 - loss: 0.0492\n", "Epoch 350/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0372 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9891 - loss: 0.0374\n", "Epoch 351/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0346 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9838 - loss: 0.0468\n", "Epoch 352/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9791 - loss: 0.0854\n", "Epoch 353/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0299 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0197\n", "Epoch 354/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0368 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0662\n", "Epoch 355/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0613 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0387\n", "Epoch 356/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0530 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9853 - loss: 0.0491\n", "Epoch 357/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0347 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0334\n", "Epoch 358/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0418 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0486\n", "Epoch 359/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0436 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0270\n", "Epoch 360/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0699 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9880 - loss: 0.0321\n", "Epoch 361/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0310 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9844 - loss: 0.0577\n", "Epoch 362/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0313 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9908 - loss: 0.0532\n", "Epoch 363/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0318 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9816 - loss: 0.1538\n", "Epoch 364/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0427 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9897 - loss: 0.0727\n", "Epoch 365/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0260 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9933 - loss: 0.0249\n", "Epoch 366/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0165 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9843 - loss: 0.0523\n", "Epoch 367/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0359 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9969 - loss: 0.0272\n", "Epoch 368/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0111 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9898 - loss: 0.0320\n", "Epoch 369/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0527 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9926 - loss: 0.0565\n", "Epoch 370/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0389 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9940 - loss: 0.0258\n", "Epoch 371/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9949 - loss: 0.0194\n", "Epoch 372/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9912 - loss: 0.0262\n", "Epoch 373/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0341 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9915 - loss: 0.0287\n", "Epoch 374/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0350 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9941 - loss: 0.0228\n", "Epoch 375/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0594 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9952 - loss: 0.0169\n", "Epoch 376/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0468 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0326\n", "Epoch 377/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0485 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9905 - loss: 0.0493\n", "Epoch 378/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9905 - loss: 0.0338\n", "Epoch 379/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0298 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9899 - loss: 0.0261\n", "Epoch 380/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0310 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9879 - loss: 0.0555\n", "Epoch 381/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0349 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9908 - loss: 0.0290\n", "Epoch 382/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0327 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9932 - loss: 0.0283\n", "Epoch 383/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0218 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0360\n", "Epoch 384/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0386 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9870 - loss: 0.0545\n", "Epoch 385/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0416 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9922 - loss: 0.0397\n", "Epoch 386/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0309 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0222\n", "Epoch 387/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0357 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9986 - loss: 0.0194\n", "Epoch 388/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0252 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9864 - loss: 0.0482\n", "Epoch 389/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0409 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9894 - loss: 0.0449\n", "Epoch 390/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0171 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9919 - loss: 0.0191\n", "Epoch 391/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0196 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9978 - loss: 0.0086\n", "Epoch 392/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0364 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9946 - loss: 0.0604\n", "Epoch 393/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0273 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9826 - loss: 0.0802\n", "Epoch 394/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0492 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9929 - loss: 0.0291\n", "Epoch 395/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0267 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9928 - loss: 0.0257\n", "Epoch 396/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0134 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9941 - loss: 0.0271\n", "Epoch 397/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0630 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9897 - loss: 0.0585\n", "Epoch 398/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0431 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9913 - loss: 0.0463\n", "Epoch 399/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0210 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9957 - loss: 0.0137\n", "Epoch 400/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0473 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9982 - loss: 0.0102\n", "Epoch 401/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0495 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 10ms/step - accuracy: 0.9945 - loss: 0.0195\n", "Epoch 402/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0350 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9959 - loss: 0.0181\n", "Epoch 403/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0232 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9890 - loss: 0.0346\n", "Epoch 404/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0362 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9937 - loss: 0.0275\n", "Epoch 405/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0329 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9949 - loss: 0.0469\n", "Epoch 406/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0199 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9792 - loss: 0.0668\n", "Epoch 407/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0474 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 10ms/step - accuracy: 0.9903 - loss: 0.0355\n", "Epoch 408/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0154 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 11ms/step - accuracy: 0.9934 - loss: 0.0222\n", "Epoch 409/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0448 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9951 - loss: 0.0323\n", "Epoch 410/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0293 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9952 - loss: 0.0245\n", "Epoch 411/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0434 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9887 - loss: 0.0478\n", "Epoch 412/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0102 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9977 - loss: 0.0135\n", "Epoch 413/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0151 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9914 - loss: 0.0486\n", "Epoch 414/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0388 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9945 - loss: 0.0316\n", "Epoch 415/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0177 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9959 - loss: 0.0134\n", "Epoch 416/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0182 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9910 - loss: 0.0336\n", "Epoch 417/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0548 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9934 - loss: 0.0210\n", "Epoch 418/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0473 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9967 - loss: 0.0182\n", "Epoch 419/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0227 - accuracy: 0.9975\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9982 - loss: 0.0168\n", "Epoch 420/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0466 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9976 - loss: 0.0143\n", "Epoch 421/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0452 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9917 - loss: 0.0328\n", "Epoch 422/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0263 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9913 - loss: 0.0214\n", "Epoch 423/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0311 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0202\n", "Epoch 424/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0385 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0375\n", "Epoch 425/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0403 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0233\n", "Epoch 426/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0312 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0286\n", "Epoch 427/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0357 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9867 - loss: 0.0736\n", "Epoch 428/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0513 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0462\n", "Epoch 429/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0247 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9840 - loss: 0.0531\n", "Epoch 430/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0550 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9919 - loss: 0.0302\n", "Epoch 431/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0380 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9859 - loss: 0.0687\n", "Epoch 432/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0398 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9964 - loss: 0.0111\n", "Epoch 433/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0334 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9970 - loss: 0.0245\n", "Epoch 434/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0249 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0684\n", "Epoch 435/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0397 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0252\n", "Epoch 436/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0403 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9862 - loss: 0.0671\n", "Epoch 437/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0414 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9867 - loss: 0.0521\n", "Epoch 438/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0263 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0235\n", "Epoch 439/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0118 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9868 - loss: 0.0337\n", "Epoch 440/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0543 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9894 - loss: 0.0301\n", "Epoch 441/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0215 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9958 - loss: 0.0258\n", "Epoch 442/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0333 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9961 - loss: 0.0189\n", "Epoch 443/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0300 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9914 - loss: 0.0170\n", "Epoch 444/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0611 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0296\n", "Epoch 445/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0302 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0274\n", "Epoch 446/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0319 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9902 - loss: 0.0442\n", "Epoch 447/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0290 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0442\n", "Epoch 448/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0395 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9962 - loss: 0.0290\n", "Epoch 449/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0272 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9918 - loss: 0.0232\n", "Epoch 450/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0285 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9957 - loss: 0.0115\n", "Epoch 451/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0281 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9823 - loss: 0.0913\n", "Epoch 452/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0159 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9942 - loss: 0.0357\n", "Epoch 453/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0502 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9978 - loss: 0.0156\n", "Epoch 454/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0357 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9870 - loss: 0.0515\n", "Epoch 455/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0495 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9909 - loss: 0.0351\n", "Epoch 456/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0277 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9925 - loss: 0.0302\n", "Epoch 457/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0246 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9921 - loss: 0.0288\n", "Epoch 458/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0316 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0135\n", "Epoch 459/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0291 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9877 - loss: 0.0352\n", "Epoch 460/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0196 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9918 - loss: 0.0390\n", "Epoch 461/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0203 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0517\n", "Epoch 462/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0309 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9797 - loss: 0.0902\n", "Epoch 463/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0520 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9912 - loss: 0.0169\n", "Epoch 464/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9933 - loss: 0.0224\n", "Epoch 465/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0351 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9939 - loss: 0.0285\n", "Epoch 466/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0545 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9877 - loss: 0.0489\n", "Epoch 467/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0185 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9931 - loss: 0.0314\n", "Epoch 468/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0237 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9967 - loss: 0.0072\n", "Epoch 469/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0194 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9922 - loss: 0.0319\n", "Epoch 470/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0558 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9953 - loss: 0.0118\n", "Epoch 471/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0372 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9872 - loss: 0.0471\n", "Epoch 472/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0345 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9967 - loss: 0.0234\n", "Epoch 473/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0134 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9917 - loss: 0.0561\n", "Epoch 474/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0427 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0377\n", "Epoch 475/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0215 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9977 - loss: 0.0083\n", "Epoch 476/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0157 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9960 - loss: 0.0137\n", "Epoch 477/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0237 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9901 - loss: 0.0569\n", "Epoch 478/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0339 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0388\n", "Epoch 479/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9875 - loss: 0.0265\n", "Epoch 480/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0227 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9943 - loss: 0.0349\n", "Epoch 481/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0291 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0479\n", "Epoch 482/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0192 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9930 - loss: 0.0214\n", "Epoch 483/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0289 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9901 - loss: 0.0361\n", "Epoch 484/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0395 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9903 - loss: 0.0253\n", "Epoch 485/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0155 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0188\n", "Epoch 486/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0290 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9971 - loss: 0.0069\n", "Epoch 487/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0114 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9968 - loss: 0.0189\n", "Epoch 488/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0121 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9874 - loss: 0.0624\n", "Epoch 489/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0211 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9934 - loss: 0.0221\n", "Epoch 490/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0374 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9964 - loss: 0.0097\n", "Epoch 491/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0250 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9890 - loss: 0.0315\n", "Epoch 492/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0326 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9967 - loss: 0.0207\n", "Epoch 493/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0215 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0615\n", "Epoch 494/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0321 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9925 - loss: 0.0141\n", "Epoch 495/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0136 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0557\n", "Epoch 496/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0336 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0229\n", "Epoch 497/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0310 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9878 - loss: 0.0459\n", "Epoch 498/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0300 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9938 - loss: 0.0249\n", "Epoch 499/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0274 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9929 - loss: 0.0390\n", "Epoch 500/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0494 - accuracy: 0.9892\n" + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9964 - loss: 0.0116\n" ] } ], @@ -1279,7 +1370,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFFklEQVR4nO3dd3xUVdoH8N/09IQUEkJHigQhSBVBRUVRXOwrll1BV311wYa6r7p2d8V3XV1bLLsW1nV37WLBgiCgIr0pRYpUgSQQSK8zc98/Jvfm3Dv3ztyZzGQmye/7+fgxM3Nn5sxNyH3ynOc8xyJJkgQiIiKiTsga6wEQERERxQoDISIiIuq0GAgRERFRp8VAiIiIiDotBkJERETUaTEQIiIiok6LgRARERF1WgyEiIiIqNNiIERERESdFgMhIupQ9uzZA4vFgrlz54b83CVLlsBisWDJkiUBj5s7dy4sFgv27NkT1hiJKH4wECIiIqJOi4EQERERdVoMhIiIiKjTYiBERBH10EMPwWKxYPv27fjNb36D9PR05OTk4P7774ckSdi/fz8uuOACpKWlIS8vD08++aTfa5SWluJ3v/sdcnNzkZCQgMLCQvzzn//0O668vBwzZsxAeno6MjIyMH36dJSXl+uO66effsKll16KzMxMJCQkYNSoUfj4448j+tlfeOEFDBkyBC6XC/n5+Zg5c6bfeHbs2IFLLrkEeXl5SEhIQI8ePXD55ZejoqJCOearr77ChAkTkJGRgZSUFAwaNAj33ntvRMdKRD72WA+AiDqmadOmYfDgwXj88ccxf/58/OlPf0JmZiZefvllnHHGGfi///s//Pvf/8add96J0aNH49RTTwUA1NXVYeLEidi5cydmzZqFvn374t1338WMGTNQXl6OW2+9FQAgSRIuuOACfPfdd7jxxhsxePBgfPjhh5g+fbrfWDZv3ozx48eje/fuuPvuu5GcnIx33nkHF154Id5//31cdNFFrf68Dz30EB5++GFMmjQJN910E7Zt24YXX3wRq1evxrJly+BwONDY2IjJkyejoaEBN998M/Ly8nDgwAF8+umnKC8vR3p6OjZv3oxf/epXGDZsGB555BG4XC7s3LkTy5Yta/UYiUiHREQUQQ8++KAEQLrhhhuU+9xut9SjRw/JYrFIjz/+uHL/sWPHpMTERGn69OnKfU8//bQEQHrzzTeV+xobG6Vx48ZJKSkpUmVlpSRJkjRv3jwJgPSXv/xF9T6nnHKKBEB6/fXXlfvPPPNMaejQoVJ9fb1yn9frlU4++WRpwIAByn2LFy+WAEiLFy8O+Blff/11CYC0e/duSZIkqbS0VHI6ndLZZ58teTwe5bjnn39eAiC99tprkiRJ0vr16yUA0rvvvmv42n/7298kANLhw4cDjoGIIoNTY0QUFdddd53ytc1mw6hRoyBJEn73u98p92dkZGDQoEHYtWuXct9nn32GvLw8XHHFFcp9DocDt9xyC6qrq7F06VLlOLvdjptuukn1PjfffLNqHEePHsXXX3+Nyy67DFVVVThy5AiOHDmCsrIyTJ48GTt27MCBAwda9VkXLlyIxsZG3HbbbbBaW36tXn/99UhLS8P8+fMBAOnp6QCAL7/8ErW1tbqvlZGRAQD46KOP4PV6WzUuIgqOgRARRUWvXr1Ut9PT05GQkIDs7Gy/+48dO6bc3rt3LwYMGKAKKABg8ODByuPy/7t164aUlBTVcYMGDVLd3rlzJyRJwv3334+cnBzVfw8++CAAX01Sa8hj0r630+lEv379lMf79u2L2bNn45VXXkF2djYmT56MoqIiVX3QtGnTMH78eFx33XXIzc3F5ZdfjnfeeYdBEVGUsEaIiKLCZrOZug/w1ftEixxA3HnnnZg8ebLuMf3794/a+2s9+eSTmDFjBj766CMsWLAAt9xyC+bMmYMVK1agR48eSExMxDfffIPFixdj/vz5+OKLL/D222/jjDPOwIIFCwzPIRGFhxkhIoorvXv3xo4dO/wyID/99JPyuPz/Q4cOobq6WnXctm3bVLf79esHwDe9NmnSJN3/UlNTWz1mvfdubGzE7t27lcdlQ4cOxX333YdvvvkG3377LQ4cOICXXnpJedxqteLMM8/EU089hS1btuDPf/4zvv76ayxevLhV4yQifwyEiCiuTJkyBcXFxXj77beV+9xuN5577jmkpKTgtNNOU45zu9148cUXleM8Hg+ee+451et17doVEydOxMsvv4xDhw75vd/hw4dbPeZJkybB6XTi2WefVWW3Xn31VVRUVOC8884DAFRWVsLtdqueO3ToUFitVjQ0NADw1TRpDR8+HACUY4gocjg1RkRx5YYbbsDLL7+MGTNmYO3atejTpw/ee+89LFu2DE8//bSSvZk6dSrGjx+Pu+++G3v27EFBQQE++OADVb2NrKioCBMmTMDQoUNx/fXXo1+/figpKcHy5cvxyy+/YOPGja0ac05ODu655x48/PDDOOecc3D++edj27ZteOGFFzB69Gj85je/AQB8/fXXmDVrFn79619j4MCBcLvd+Ne//gWbzYZLLrkEAPDII4/gm2++wXnnnYfevXujtLQUL7zwAnr06IEJEya0apxE5I+BEBHFlcTERCxZsgR33303/vnPf6KyshKDBg3C66+/jhkzZijHWa1WfPzxx7jtttvw5ptvwmKx4Pzzz8eTTz6JE088UfWaBQUFWLNmDR5++GHMnTsXZWVl6Nq1K0488UQ88MADERn3Qw89hJycHDz//PO4/fbbkZmZiRtuuAGPPfYYHA4HAKCwsBCTJ0/GJ598ggMHDiApKQmFhYX4/PPPcdJJJwEAzj//fOzZswevvfYajhw5guzsbJx22ml4+OGHlVVnRBQ5FimaVYpEREREcYw1QkRERNRpMRAiIiKiTouBEBEREXVaDISIiIio02IgRERERJ0WAyEiIiLqtNhHKACv14uDBw8iNTUVFosl1sMhIiIiEyRJQlVVFfLz8/02cNZiIBTAwYMH0bNnz1gPg4iIiMKwf/9+9OjRI+AxDIQCkFv579+/H2lpaTEeDREREZlRWVmJnj17mtpQmYFQAPJ0WFpaGgMhIiKidsZMWQuLpYmIiKjTYiBEREREnRYDISIiIuq0WCMUAR6PB01NTbEeRrvkcDhgs9liPQwiIuqkGAi1giRJKC4uRnl5eayH0q5lZGQgLy+PvZqIiKjNMRBqBTkI6tq1K5KSknghD5EkSaitrUVpaSkAoFu3bjEeERERdTYMhMLk8XiUICgrKyvWw2m3EhMTAQClpaXo2rUrp8mIiKhNsVg6THJNUFJSUoxH0v7J55B1VkRE1NYYCLUSp8Naj+eQiIhihYEQERERdVoMhKhV+vTpg6effjrWwyAiIgoLi6U7oYkTJ2L48OERCWBWr16N5OTk1g+KiIgoBhgIxYAkSXB7JXi9Epx2a9zVyEiSBI/HA7s9+I9HTk5OG4yIiIgoOjg1FgNeScLWQ5XYVlIFSWrb954xYwaWLl2KZ555BhaLBRaLBXPnzoXFYsHnn3+OkSNHwuVy4bvvvsPPP/+MCy64ALm5uUhJScHo0aOxcOFC1etpp8YsFgteeeUVXHTRRUhKSsKAAQPw8ccft+2HJCIiMomBUARJkoTaRnfQ/+qaPKhv/q+6ocnUc4L9J5mMqJ555hmMGzcO119/PQ4dOoRDhw6hZ8+eAIC7774bjz/+OLZu3Yphw4ahuroaU6ZMwaJFi7B+/Xqcc845mDp1Kvbt2xfwPR5++GFcdtll+OGHHzBlyhRcddVVOHr0aKvPLxERUaRxaiyC6po8KHjgy5i895ZHJiPJGfzbmZ6eDqfTiaSkJOTl5QEAfvrpJwDAI488grPOOks5NjMzE4WFhcrtRx99FB9++CE+/vhjzJo1y/A9ZsyYgSuuuAIA8Nhjj+HZZ5/FqlWrcM4554T12YiIiKKFGSFSjBo1SnW7uroad955JwYPHoyMjAykpKRg69atQTNCw4YNU75OTk5GWlqaso0GERFRPGFGKIISHTZseWSyqWO3FVehyePFcTnJSDSRyTHz3q2lXf1155134quvvsJf//pX9O/fH4mJibj00kvR2NgY8HUcDofqtsVigdfrbfX4iIiIIo2BUARZLBZT01MAkOi0wea2IMFhN/2cSHE6nfB4PEGPW7ZsGWbMmIGLLroIgC9DtGfPniiPjoiIqO1wakxHUVERCgoKMHr06Ki9h7V5yby3rZeNwbfSa+XKldizZw+OHDlimK0ZMGAAPvjgA2zYsAEbN27ElVdeycwOERF1KAyEdMycORNbtmzB6tWro/YeciAUgzgId955J2w2GwoKCpCTk2NY8/PUU0+hS5cuOPnkkzF16lRMnjwZI0aMaOPREhERRY9FMrvuuhOqrKxEeno6KioqkJaWpnqsvr4eu3fvRt++fZGQkBDya+86XI3qBjd6ZSYhI8kZqSG3S609l0RERKJA128tZoRipGVqLMYDISIi6sQYCMWIvKtGLGqEiIiIyIeBUIzEsliaiIiIfBgIxYi1OSPEOIiIiCh2GAi1Uri15swItWC9PhERxQoDoTDJ3ZNra2vDer6FxdIK+RxqO1ITERFFGztLh8lmsyEjI0PZQyspKUkJbszwuBsguRvRWC+hvt788zoSSZJQW1uL0tJSZGRkwGZr/TYhREREoWAg1Ary7u3hbCha3eBGeW0Tqp021B/r3H2EMjIylHNJRETUlhgItYLFYkG3bt3QtWtXNDU1hfTc+T8cxFOLt2Ncvyz86aJBURph/HM4HMwEERFRzDAQigCbzRbyxdzudOFAlQeHajzspkxERBQjLJaOkQSHL3Cqawy+CzwRERFFBwOhGEmUA6Em7uZOREQUKwyEYiTR6QuE6puYESIiIooVBkIxksipMSIiophjIBQjSo0QM0JEREQxw0AoRuSpMQZCREREscNAKEZcdt+pb3R7udcWERFRjDAQihF5agwAGtxcOUZERBQLDIRiRM4IAVw5RkREFCsMhGLEYbPCZvVttsqMEBERUWwwEIqhhOasEDNCREREscFAKIZcDrmpIjNCREREscBAKIbkjFCDmxkhIiKiWGAgFEPMCBEREcUWA6EYcjEjREREFFMMhGIogRkhIiKimGIgFEMurhojIiKKKQZCMSRnhNhHiIiIKDYYCMUQM0JERESxxUAohpgRIiIiii0GQjGU4GBGiIiIKJYYCMWQy96cEWIgREREFBMMhGJIzghxaoyIiCg2GAjFkJwR4tQYERFRbHT4QOjTTz/FoEGDMGDAALzyyiuxHo4KM0JERESxZY/1AKLJ7XZj9uzZWLx4MdLT0zFy5EhcdNFFyMrKivXQAIidpZkRIiIiioUOnRFatWoVhgwZgu7duyMlJQXnnnsuFixYEOthKVr6CDEjREREFAtxHQh98803mDp1KvLz82GxWDBv3jy/Y4qKitCnTx8kJCRg7NixWLVqlfLYwYMH0b17d+V29+7dceDAgbYYuikupY8QM0JERESxENeBUE1NDQoLC1FUVKT7+Ntvv43Zs2fjwQcfxLp161BYWIjJkyejtLS0jUcaHmaEiIiIYiuuA6Fzzz0Xf/rTn3DRRRfpPv7UU0/h+uuvxzXXXIOCggK89NJLSEpKwmuvvQYAyM/PV2WADhw4gPz8fMP3a2hoQGVlpeq/aEpgRoiIiCim4joQCqSxsRFr167FpEmTlPusVismTZqE5cuXAwDGjBmDTZs24cCBA6iursbnn3+OyZMnG77mnDlzkJ6ervzXs2fPqH4GZoSIiIhiq90GQkeOHIHH40Fubq7q/tzcXBQXFwMA7HY7nnzySZx++ukYPnw47rjjjoArxu655x5UVFQo/+3fvz+qn0FZNcaMEBERUUx06OXzAHD++efj/PPPN3Wsy+WCy+WK8ohapLh8p7+q3t1m70lEREQt2m1GKDs7GzabDSUlJar7S0pKkJeXF6NRhaZLshMAUF7bCEmSYjwaIiKizqfdBkJOpxMjR47EokWLlPu8Xi8WLVqEcePGxXBk5nVJcgAAmjwSaho5PUZERNTW4npqrLq6Gjt37lRu7969Gxs2bEBmZiZ69eqF2bNnY/r06Rg1ahTGjBmDp59+GjU1NbjmmmtiOGrzEh02uOxWNLi9OFbTqEyVERERUduI6yvvmjVrcPrppyu3Z8+eDQCYPn065s6di2nTpuHw4cN44IEHUFxcjOHDh+OLL77wK6COVxaLBV2SnCiurMex2kb0zEyK9ZCIiIg6lbgOhCZOnBi0dmbWrFmYNWtWRN+3qKgIRUVF8HiiP12VkeRoDoSaov5eREREpNZua4SiaebMmdiyZQtWr14d9ffqktRSME1ERERti4FQjHVJ9hVMH6thIERERNTWGAjFWEZzRohTY0RERG2PgVCMZXJqjIiIKGYYCMVYRnMvIWaEiIiI2h4DoRjrokyNMSNERETU1hgI6SgqKkJBQQFGjx4d9fdSiqUZCBEREbU5BkI62nL5vFIsXcOpMSIiorbGQCjG2EeIiIgodhgIxZi8aqym0YNGtzfGoyEiIupcGAjFWGqCHVaL72tmhYiIiNoWA6EYs1otbKpIREQUIwyE4kBLLyFmhIiIiNoSA6E4oPQS4n5jREREbYqBkI627CMEiE0VOTVGRETUlhgI6WjLPkIA0IVTY0RERDHBQCgOdElmLyEiIqJYYCAUB7jxKhERUWwwEIoDXVMTAADFFfUxHgkREVHnwkAoDvTOSgIA7CmrifFIiIiIOhcGQnFADoQOltdxmw0iIqI2xEAoDuSkuJDktMErAb8cq431cIiIiDoNBkJxwGKxoHdWMgBgbxkDISIiorbCQChO9M5knRAREVFbYyCko607SwMtdULMCBEREbUdBkI62rqzNAB075IIADhUUddm70lERNTZMRCKE3lp7CVERETU1hgIxYn8DF9G6CADISIiojbDQChO5KX7MkJHqhvYS4iIiKiNMBCKE1nJTjhtVkgSUFLJrBAREVFbYCAUJywWi5IVKmYgRERE1CYYCMURORA6WM6VY0RERG2BgVAcyU/nyjEiIqK2xEAojuSkugD4CqaJiIgo+hgIxZHsFDkQaozxSIiIiDoHBkJxJCuFGSEiIqK2xEBIRyz2GgOA7BQnAGaEiIiI2goDIR2x2GsMEKfGmBEiIiJqCwyE4ogcCB2taYTXK8V4NERERB0fA6E4kpnsmxrzeCWU1zXFeDREREQdHwOhOOK0W5Ge6AAAlHF6jIiIKOoYCMWZrOaC6cMMhIiIiKKOgVCckeuEnlu0E5LEOiEiIqJoYiAUZ84ZkgcAWL6rDN/sOBLj0RAREXVsDITizLUT+mLioBwAwNZDlTEeDRERUcfGQCgOjejVBQCwo6Q6xiMhIiLq2BgIxaH+XVMAADtLq2I8EiIioo6NgVAcGqAEQtUsmCYiIooiBkJxqHdWMuxWC2oaPThUUR/r4RAREXVYDITikNNuRZ/sZADAjlLWCREREUULAyEdsdp9XtQ/p2V6jIiIiKKDgZCOWO0+LxqQy4JpIiKiaGMgFKfklWM7SqpRVt2ABrcnxiMiIiLqeBgIxakBXVMBAGv2HsPIPy3EhUXfx3hEREREHQ8DoTjVLydZdXvroUq4Pd4YjYaIiKhjYiAUpxIcNqQnOlT3cSk9ERFRZDEQimOZyU7V7X1Ha2M0EiIioo6JgVAc65KkzgjtLWMgREREFEkMhOJYZrJLdXvv0ZoYjYSIiKhjYiAUxzKT1RmhfcwIERERRRQDoTjWRVMjtPVQJTdhJSIiiiAGQnEsM0kdCO0pq+WWG0RERBHEQCiOiRmhBIfvW7VgS0mshkNERNThMBCKY2JG6OIRPQAAq/ccjdVwiIiIOhwGQnGsi1AsfUJ+OgCgrLoxVsMhIiLqcBgIxTGHreXbc1zzlhtl1Q2xGg4REVGHY4/1AMjY8XlpOC4nGdkpLuRnJAIAymoaIUkSLBZLjEdHRETU/jEQimNOuxULbj8NVgtQ1+QBADS4vahp9CDFxW8dERFRa3FqTEdRUREKCgowevToWA8FNqsFFosFSU47Eh02AMBR1gkRERFFBAMhHTNnzsSWLVuwevXqWA9FRd6E9UgN64SIiIgigYFQO5Kd4guEmBEiIiKKDAZC7UhWim8T1jJmhIiIiCKCgVA7Ik+N/ePb3Zj4xGJsL6mK8YiIiIjaNwZC7UhW89TYztJq7Cmrxe//vS7GIyIiImrfGAi1I93SElS3uQErERFR6zAQakcG5qX63bevrDYGIyEiIuoYGAi1I4Ny/QOhHw6Ut/1AiIiIOggGQu2IvGpMdKSKK8iIiIjCxUConTvCnkJERERhYyDUzlw+uqfq9hHuRk9ERBQ2iyRJUqwHEa8qKyuRnp6OiooKpKWlxXo4AIC6Rg/W7j2GnaVVeOiTLTjj+K5ocHvgstvw6vRR3JWeiIg6vVCu39zCvJ1JdNowYUA2ahrdAIC1e4+hoq4JAHCstklpukhERETBcWqsncpuLpyWgyAAKK6oj9VwiIiI2iUGQu1Ujs4KsuLKuhiMhIiIqP1iINROZaf6T4EVV7BwmoiIKBQMhNqpJKcdSU6b6r41e49iyjPf4l8r9sZoVERERO0LA6F2rFdmkur2B+sOYMuhStw/bxPqmzwxGhUREVH7wUCoHbvvvALDx77cXNyGIyEiImqfGAi1YxMGZOOtG07CjJP7+D32xSYGQkRERMEwEGrnTuqXhd9N6KvcPr55h/qN+8tjNCIiIqL2gw0VO4CemUl48aoRSHbZMaJ3Fwx96EscrKhHaVU9uqYmxHp4REREcYsZoQ7i3KHdcOrAHKS47BjQNQUA8MP+ihiPioiIKL4xEOqACntkAADW7z8W24EQERHFOQZCOoqKilBQUIDRo0fHeihhGdm7CwCgaPHP+P2/16KqvinIM4iIiDonBkI6Zs6ciS1btmD16tWxHkpYxvTNVL7+7MdivLVqfwxHQ0REFL8YCHVAfbOTVbeX7yrDxxsPxmg0RERE8YuBUAdksVhw2sAc5fbXP5Xilv+ux7biqhiOioiIKP4wEOqg/nLpMOSmqXeo33+0NkajISIiik8MhDqo3LQE3DZpoOq+Jo83RqMhIiKKTwyEOrDMZKfqdllNY4xGQkREFJ8YCHVg2kDoKAMhIiIiFQZCHRgDISIiosDCCoT++c9/Yv78+crtP/zhD8jIyMDJJ5+MvXv3Rmxw1DpZnBojIiIKKKxA6LHHHkNiYiIAYPny5SgqKsJf/vIXZGdn4/bbb4/oACl8aQkO1e2y6oYYjYSIiCg+hbX7/P79+9G/f38AwLx583DJJZfghhtuwPjx4zFx4sRIjo9awWq1qG5zaoyIiEgtrIxQSkoKysrKAAALFizAWWedBQBISEhAXV1d5EZHreawtQRD4tTY6j1Hcfpfl+Drn0piMSwiIqK4EFYgdNZZZ+G6667Dddddh+3bt2PKlCkAgM2bN6NPnz6RHB+10pK7TscTlw4DAByualCaKt705jrsPlKDa+euieXwiIiIYiqsQKioqAjjxo3D4cOH8f777yMrKwsAsHbtWlxxxRURHSC1TveMRJw/PB9Om+9bffGL30OSJBxhvRAREVF4NUIZGRl4/vnn/e5/+OGHWz0gijyX3YZnrxiOG99ch8NVDThcpQ6CPF4JNqsFkiRBkvxri4iIiDqqsDJCX3zxBb777jvldlFREYYPH44rr7wSx44di9jgKHLOOaEb+mQlAQC+/7lM9djB8jpIkoTfvroKU579lltxEBFRpxFWIHTXXXehsrISAPDjjz/ijjvuwJQpU7B7927Mnj07ogOkyDkuJwUAcNvbG1T37yytxpHqRny38wh+Kq7CloOVcMcgGPJ4pTZ/TyIi6tzCCoR2796NgoICAMD777+PX/3qV3jsscdQVFSEzz//PKIDpMg5rmuK7v3bS6qwo6RKuX1B0TJc+Y+VqmN2llbjzRV7oxas7CipwvCHF6Bo8c6ovD4REZGesAIhp9OJ2lrf6qOFCxfi7LPPBgBkZmYqmSKKP70yk5Sv0xLsOOP4rgCA1XuOYbsQCAHAqj1HVbfP/ttS3DdvE/69Mjqdwx/5dAuqGtx44sttUXl9IiIiPWEVS0+YMAGzZ8/G+PHjsWrVKrz99tsAgO3bt6NHjx4RHSBFTkF+mvL1uvvPwuaDlfj6p1Ks3F2GnFSn3/Fer6QUTsuJoG+2H8bV4/q0xXCJiIiiLqyM0PPPPw+73Y733nsPL774Irp37w4A+Pzzz3HOOedEdIAUOSN6dcGzV5yIT2+eALvNiiH5aUh12VFV78aH6w/4HV/d6Pa7r8HNQmoiIuo4wsoI9erVC59++qnf/X/7299aPSCKrvML85Wv7TYrxh2XhQVbSlDf5B/gVNW7kZbgUK0iq2/yRGVcFguX7BMRUdsLKxACAI/Hg3nz5mHr1q0AgCFDhuD888+HzWaL2OAo+m6dNAALtuhvs1FV34SyaiteX7ZHua+mITqBEBERUSyEFQjt3LkTU6ZMwYEDBzBo0CAAwJw5c9CzZ0/Mnz8fxx13XEQHSdEzJD8dD00twKKfSlHYIwPPC6u2qurd+L/Pf8LibYeV+0oq69t8jJIkYfY7G9EnKxm3ThrQ5u9PREQdV1g1QrfccguOO+447N+/H+vWrcO6deuwb98+9O3bF7fcckukx0hRNmN8X/zrd2MxIFe9vL6qvkkVBAG+jVtrGtyY8foq3PPBj5Ck6Pf+WbfvGD5cfwB/W7g96u9FRESdS1gZoaVLl2LFihXIzMxU7svKysLjjz+O8ePHR2xw1LYyk9Urx6rq/YulAeC7nUewpDlAGt2nCy4e4b9S8NXvdqOyrgm3TRpgqv4n0BHidJwkSawnIiKiiAkrI+RyuVBVVeV3f3V1NZxO/2XY1D50SVJ/7yrqmnSPW7e3ZRuVl5fu8nu8vsmDRz/dgmcW7cC3O460elxizqnJw+7TREQUOWEFQr/61a9www03YOXKlc0bdUpYsWIFbrzxRpx//vmRHiO1kQSHutB9Z2m17nFLt7dMl+06Uu23HYcYQP3j21245MXv8eaKwI0YAyV5xOm3Ru6DRkREERRWIPTss8/iuOOOw7hx45CQkICEhAScfPLJ6N+/P55++ukID5HaSr/sZJx8XJZye/NB/S7hPxW3ZAObPBIOlNepHi+vbQmEvt1xBGv3HsN98zYp972zZj+uemWFYcZJyysEQg1RWr5PRESdU1iBUEZGBj766CNs374d7733Ht577z1s374dH374ITIyMiI8RGorVqsF/7n+JNxypm9l1lphCgwArh7XW/d5u47UqG6X1zYGfJ8/vPcDlu0sw0tLfzY1rgahxxEbOhIRUSSZLpYOtqv84sWLla+feuqp8EdEMZeWoP6x+O1JvXHqwBxMHJSDD9cdQFWDuoh69+EaTBzoywx1z0hEuclMT6XBcR6vBJu1Za6s3t2SBWIgREREkWQ6EFq/fr2p47iip/1LFQKhiYNycO+UwUh0+uqHMlOc/oHQkRo8//VOPPnVdjxx6TCYXVEvBjuiJo8XNmtLvZLY9bqRgRAREUWQ6UBIzPhQ53Hn2YOUIAgAMpKc2FtW2/y1A+W1TdhTVoN/NRdD3/XeD7j+lL6mXtsqBM1iSNTk8aoKt8VtPRrc0a0Reu273dheUoU5Fw9lUE9E1AmEVSNEHduJvboAAPLSEnBC93TVY12SHMrXg3JTAQAHNcXS//h2t+7ryisMZVaDQMPtkfDxxoP47asrUVbdoMoIRXtq7JFPt+Ct1fuxbGdZVN+HiIjiQ9h7jVHHNTA3FV/cdgq6pSf6PZYp9Brq3zUFK3cfxaGKevTJSsKe5kyRkSaPBI+3JRCyCWG42B6oyePFLf/1TcW+sORnpLhafkwbdDaHjYaqenN1TkRE1L4xECJdx+el6d6foQmEAKC2UX+6KjfNhZLKBuV2vdujqvERM0JNwv1ir6Cq+ibYbRbhsbZZPu9pg61DiIgo9jg1RiERp8ayU1zIaL6tlw3SZpTqGz2obdBfAeb2tnz9m1dWKl+nuBzq5fNtlBESM1eRVF7biH8t34NjNYFbDBARUdvoFIHQRRddhC5duuDSSy+N9VDavS7CfmQpCXbkpSWoHr98dM+WY4WgCQDqmjyoaWxZcVYnZJIahbkxMajySpKmWLptAqFoJYRufWsD7v9oM258c2103oCIiELSKQKhW2+9FW+88Uash9EhiPuRpbjs6JauDoSuHNtL+frUgTmqx+qbvKgVAiGxP5B2mw5ZZV0T6tpo1ZhYyP3op1vw2nf6Rd+tIW9PsnL30Yi/NhERha5TBEITJ05EampqrIfRIYhZnhSXHXma6a/sFBdG9MpAaoIdF5/YA4vuOA2pzcXOdU0e1U7yYqanySAQqqhrUh0XzT5C4nRYWU0jHvl0S9Tei4iI4kPMA6FvvvkGU6dORX5+PiwWC+bNm+d3TFFREfr06YOEhASMHTsWq1atavuBEgB1sbReRijJacM7/zMO3999BtKTHDguJwVd01wAfIFPjdCMsU6o93Eb7CrvC4TaZvm8W6cuSGLRNBFRhxbzQKimpgaFhYUoKirSffztt9/G7Nmz8eCDD2LdunUoLCzE5MmTUVpaqhwzfPhwnHDCCX7/HTx4sK0+RqeRltiy0DDZZUfXVJfq8SSnHXabFakJLZkjuSGjr0ZIPyNktKt8uSYjFM1ASK9A+qY31+GLTcVRe08iIoqtmC+fP/fcc3HuuecaPv7UU0/h+uuvxzXXXAMAeOmllzB//ny89tpruPvuuwEAGzZsiMhYGhoa0NDQsty7slJ/9/XOLEcIfFIT7MgUiqftVgucdv/YOsHuC4TqGz3qGqEmsUbIOCOUrOojFLxGqL7Jg3fW7MfEgV3RKysp6PEyvSXzX2wuxhebi7Hn8fNMvw4REbUfMc8IBdLY2Ii1a9di0qRJyn1WqxWTJk3C8uXLI/5+c+bMQXp6uvJfz549gz+pk3HZbVj9x0lYc98kOGxWZKW0BEJJwlYcIjkjdNO/1+GBjzYr9weqEXri0mEAfIGQGPw0GGSORC8s+RkPfLQZk5/+xsQnauExCMa0thysxBebDoX02kREFJ/iOhA6cuQIPB4PcnNzVffn5uaiuNj8dMWkSZPw61//Gp999hl69OhhGETdc889qKioUP7bv39/q8bfUeWkupCd4ssMZSa3ZIiSnPoJRnHfMFFdgEAoP8NXhN3o9qK8tqXLs14foX1ltVi9p2UV1nc7Dvu9vhl6NUJ6pjz7LW58cx1++KVcdf+6fcdw+d+XY9OBipDel4iIYieuA6FIWbhwIQ4fPoza2lr88ssvGDdunO5xLpcLaWlpqv8oMHFqzGg3eaNASCyCbtJkY3JSXcrrlVTVK/c3uD3Ydbhatdz++jfW4LKXl+NA855n4WyWKr+ukf/51xq/AEfbRPLiF77Hil1HMeN1FvMTEbUXcR0IZWdnw2azoaSkRHV/SUkJ8vLyYjQqEqUlCPU7Bj1+Eh36P2aqGiGvOtOT5LQhPdFXcC2W7ny1pQRnPLkUf3jvB+W+4sp6SBKwt6wGAKCNx95dsx9X/H0FymuNuzlPf20Vpv19heHjX24uwbSXl6uaQKa4fAFedYMbj3/+k3L/kWr1+/xrxV58/ZP6Z5iIiOJDXAdCTqcTI0eOxKJFi5T7vF4vFi1aZJjVobYlZl/qDba/MM4I+YIKSZL8MkJJTjsyEh1+z5GDjA/WH8Af3tuI0sp6pbfQsRrfFJoFLWN6c8Ve3PXeD1i+qwzPLNph+DlW7Are4LCm0YPyupYgx2nzfa5nFm7HS0t/1n3O5oMVuH/eJlw7d03Q128rH6z7BW8s3xPrYRARxYWYrxqrrq7Gzp07ldu7d+/Ghg0bkJmZiV69emH27NmYPn06Ro0ahTFjxuDpp59GTU2NsoqM4ke9QU2OS1hJdmKvDKzfVw7ANx3m9nihV5qT5LShW0YCdh2pMXy/d9b8gv5dU5Sl90fljI+QEbpv3ibl6yPVjfB4JcMpPDPkYAsAmpqzWNtKjKfUDpXXGz4WC16vhNnvbAQATBqcq9RiERF1VjEPhNasWYPTTz9duT179mwAwPTp0zF37lxMmzYNhw8fxgMPPIDi4mIMHz4cX3zxhV8BdSQVFRWhqKgInjba6byjMCo2Fnen/891J2Hf0VplRde8DQd1V5u57FZ0N3GRloMbAMpGpkZhzicbD+LHX8rx5e2nwmVveU9vCBusitNrTc2ZKJdOywDltYV5vVDeJ1qahCnIqnp3gCMpluqbPLjrvR9wVkEuzi/Mj/VwiDq0mAdCEydODNq9d9asWZg1a1YbjQiYOXMmZs6cicrKSqSnp7fZ+3ZUx4TgIdFpw8DcFOX2ne9u1H2OxWJB94zgPYDETtVH5UAoQMJnT1ktNh2owMjembrjC+aYsIJNns4LHAi1fG3UNLItiVuUhFFTTm3ktWW78cnGg/hk40EGQkRRFtc1QtQxyAGKzGKxIMGggFrUvYtxRqiwZwYAoLLePxAyas4os1nV7324usHgSH8Pf9LSB0le8q/XRFImBvnR7IptVjT3aqPIKa00/zNJRK3DQIha7Z/XjkF2iguvTh+l+/gVY3w70k/on63cZ1RYLeohBEJ9s5NVj3XP8O1xVlHXkqGRMzviVJye2ka3avn9kSrzGaHSqpYLlJzhEafZZH/6dAsmPrEYR4Qg0GhVXVsSi9KNNroN/TW9mPWfdfjXir0ReT1ST6kSUXTFfGqM2r/TBuZg9R/PNOzfc35hPvplp6B/1xTdx42INUJD8tOwWyiczm/e9V4MhOSMkLiNh56fDlVh1n/WY/KQXMy5eBgOV4dX0Nzk0a8RslqAV77bDQD4xze7lPv1mkG2NTEjpF2pZ6Sksh4ZSQ7dgA/w1V59+sMhfPrDIfz2pN4RGWdnp7fvHRFFBzNCFBGBmhhaLBYM7ZGubLUBAC9cNQL/c2o/XDKih+Hz8oSd7Yc3T4XJ5NVOlTqBUE2QjNAjn27B0ZpG/HeVr3P44arwpiGMiqWtwrn45VhL08W4qBESFgCYmSbbUVKFsY8twq+e/c7wGDEYjZVvdxzGdf9cg9LK+FqlFy5mhIjaDgMhiokpQ7vhnimD0S8n2fAYh82Ki07sjsHd0nDVWHWmQd7jTBsISZKE2obQVkNpGyCapWRUNDGgGBOKf9gHywhV1DZFbLrKSKPb/NSYJEn45Affnmo7So1bBERbaWU95v9wSDWdqfXbV1dh4dYS3PvhJsNj2hNmhIjaDqfGKKaCLZH/27Thytc5qS4leyPvayZmIxrcXuworQ6aEZLZrRbsK6tFcUV4WYRGjxelVfWo1ixD9zV09L+QBaoRKq6ox0lzFmFwtzR8fuspyv1Fi3firdX78N6NJyM3LcHw+aGMWfk6QEbI65Vw+d9XYNWe4I0mRZIkhbXFSSDnPvMtymoa8eDUAlwzvm/AY8UMXFtr8nhht1oi8vnjIHlI1GkwI6SjqKgIBQUFGD16dKyH0uEFWhmm1TuzZTm9vOpM27vo7L+Z33He7ZVw6hOL8fHGg6afI1q/7xhOnvM1/r1yn+Z19a9igVaNLdzq24Jj66FKnPXUUry/9hcAwBNfbsP+o3V4cYl+52qzJEnCsZpGVfATaKruYEVdyEEQEJ2VcWXNU57yOQrE7Ma5kVbb6MbYxxbhN6+ujMjrcWqMqO0wENIxc+ZMbNmyBatXr471UDq8QXmpqttXjOmFz245RffYh84fAqsFuHJsLyQabNvRFk4Z4Fv9tnBrqe6F1+haHChIsAvdrneUVuMOTX+lOpNZLiP3frgJJz76FVbsKlPuCzQ1ZhDL6RKv2a0dZyBmxhRo+iyalu0sw9GaRizbWRb8YBNiFdARdUYMhCim0hIcmDgoR7k95+KhKMhP0z32hO7pWH//2fjzhScY7l/WFtJ09kAzo06zmu2dNftx9/s/oMHtgVVn2w9to1GvVwrafNTIf1f5slZ/W7hduS/g1FgI7yMGeHUG26wEU1HbhIPldQGPMTMmsyvhIs0W4d+k8dCFnKizYI0Qxdwzl5+I++ZtwhnH5wQ9Nj3JF4Qk6mzL0VbSEsILhLRbWvzhvR8AAFML82HTqSsR+yF5JAm/eu47JLtseOd/xoVdh5LqsitNKI0yQn/9chv+GcKmrGLwow2EvthUjC0HK3D7WQMDjrnwkQUAgDX3TUJ2ikv3GDOxmdG0ZLSJny0SdVJi0BeNuisiasFAiGIuPdGB5644MaTnxHJqLC0xvH82NQar2Woa3LobwYodubeXVGHLoUoAQFWDO6RgTOyrlJrgUAKhRoPsyfOLd+reb0TcbFc7NXbjm2sBAMN7ZeCM4/33B5QkCdXCedl0oAITB3XVfR8zGaFYrbYSWyY0eryGPZfMEj9Hk0eC085AiChaODVG7ZKZqbFv7mrZzDfRYcOvRxr3LArk/ZvGqW6nusIMhAzqZ+rdXkg6q8zeXNnSqXlvWctqqPKawH17PF4Jj366BV9s8i19P3BMf8pJb2qsPoypLTH4MXr+LwZjuOOdjRj60ALldqCprbieGhMDoQgUjIufNVZZLqLOghkhapeCZYSenjYcvbJaVpn1yU7G1MJ8vNu8GisU2qAr3L/2jXZ7rzcIkF5e2tKVWruViPjZtD5Y9wte/W43Xv1uN/pmJ6OwR8vGweLr6E2NHQrQSsBoiibQ1JjMKDj4YP0B1e2ABdwmYpxYZYTE0xKJQEibEeoM3B4v7JEutiIygT911C4F2vH9xatG4MITu6vukyQJyWFmcrTv5bCFN01hNDVW7/agIYTVTkdrAzeA3Hm4pfnh7iM1mLehpT2AOA2ld8E+FKBg2eiCLGaEjFaNmb2YBwqENuwvx2UvLw8YaES7IaXWF5sO4c/zt6jeNxIdxMXTZXYlXHWDG0u3H27zcxAJbyzfg4IHvlStaiRqKwyEdLCPUPyzWtU72Is7wGfpFNs6bFakJrQEQtqanCvG9DR8L6dNnQFyBAjCAqk2CoSaPCFlEcqDBEJGmSetUDNCRlM0RhkhryqrYe7zBQuYVu0+iqXbDwcYY9tmT258cx3+8e1ufLLxkHJfJDJCjULzTbOf6cZ/rcX011bhaWFlYHvxwEeb0ejx4ra3NsR6KNQJMRDSwT5C7YM4PZYndF3OTHYqXz9ywRCkJzrw2EVDVRkhcWf7j2aOx4m9uhi+j9MvI6T/zyYjyYG0BOOsk3Eg5A3pr/hjOjVCB8vr8P3PRwCY3/tLL3NxqKJ1GSG5Rsjt8apeXy+roXffH97biFe+bZkS1GsXEKhWKFZTY+J5i0Qg1KDaHNfc63230/f9f3PFviBHxi+9RQNE0cZAiNotsXZH3nsMALKFr68e1wcbHjgLQ3ukI1lYci/vXg8AyS6bqqGhljYQchoEQv93yTAMDxBQGU6NhZgROqaTETr3mW9x5T9WYuWuMtX+a4Fo31OSJBwMlBEyuCDXaVaNvbf2F5zw0JeqTtB6K9QqdTJXXgn40/ytym294CvcqcloEoOzULtr6wU64r507hBrhNpzV2oGQhQLDISo3RIzQj27tBQPa5eWywW+GUlOPHLBEMy5eCgyhWAp2WUPWKRpNiPksFmQ6DB+HaOMUF0EAiE5C7RgS4lugKFHvAB/sakYo/60UNnaQ4/RFI1q+XyTF3e+uxH1TV7M+s965X69fdbMZK70slYW7S63YZIkCXe8sxHPLdqhui8c4qkJpUbo7dX7cMKDX+IbzXSfeL7qmjxYu/eo6Vqh9tyMkYEQxQIDIWq3xIxQ9y6J+Oe1Y/D+TeN0uzTLrh7XB1eM6aXKACW77HAEygjZzBVL261WZTNYwL/IOtDUmPbiecWYnrjljP7okuRAljDVB/hPjYl9girrmlBlMiPUJOxEf+Oba1FW0xgwm2E0RSM2fjRaNaaXDTMVCOmMJ9z9zFbvOYqb3lyrdLDeVlKF99f9gie/2o76Jg++2X4YJz76Fb7YVBzya4vBRyhB7f++/yMa3F7M/Pc61f3iz8PdH/yIS15cjicWbDP1mh5mhIhCwkCI2i2xu7TTZsVpA3MwsnemqeeKtSRJDpvqF/DFI7rjwakFym1t4GNULG23WZAkjKlfTorqcaOpsQadjNCMk/ti9tmDsO7+s/DkZYWqx7QZoWJhOutQRT0q68OvEQrE7fFt8aENYMTgx6iPUE2D//2Bir7lzIx+IBTeNh6/fmk5Pt9UjEc+2dL8Hi2P7Tpcg6tfW4Xy2ialCWQwYvAjTkeFUyPk0rRoEKfGNu4vB6BupyCqbnDjpaUtm/K244SQbof1tiJJEv69ci9Wh7HZMLVvDISo3RKnxrTTV8GIF0G7zaqa7rJb1ZMv2t45RjVCDptVVZCdmmDHynvPxMzTjwMAVBv1EXJ7/IISOaCyWCw4bWAOphbmK4+JHacBoLiyJRDaUVqFyjpzU2MhB0JeL55dtBOFDy/AdzuOtIzfxPJ5vWxYoIyQHKjqBkJNrStGPtCcERKDth2lVSG/jnj+xDKecAKhJM2WMXpZL6Ofuz/P34LHP/9Jud2ep8YCZXOjbcWuo/jjh5vw65eWx2wMFBsMhKjdkvcdAwL3FdKjLSi1C1kfm9Wq0+e5hVGNkN2qzgi57FbkpiWgV6avfsmws3ST1+/iKU77WSwWPHfFifh41ngAQHmtOoAoEQKhksoG0wFOqBfs+iavsmnr3O93K/ebaagY6tSYXI/U6PF/vXAyQmLtT3rzprn1QkC1o6Ta7zkAsGJXGRb/VKr7mBisiK8fTh8h/0DI/zO6DOrPVuxSZzDifWpMkiTc88EPeO273X6PxbKf4i/HaoMfFCd+PlyNuct2R2SFIrGzNLVjvTNbCqRDzQhpAyFxasxutRhu8GmzWgxrhBw2K1KEjJAcMAXrRF3X6EGjSz8jJJKzTbWaXeyLKxoCvr6RUBvvLdnWEhB0a1511+TxqoqojQIhOSNUWlWPO9/9AbmproBdvuWMkF5mpD5IRsjjlfxqTY5Ut2TR5O+RmBHaXuKfEfJ6JVz+9xUA9DeDbVQtcW/d1Jg4zStJku7nNtpWRptEEX92n/96B7JTXLh8TK+QxxQt6/Ydw39X7QcAXDO+jyrjarPGLhIK9XdILJ355FIAvj+uZp7eP8ajaf8YCFG71VvYZsJo2sCINgYQszyBCjYtCJARsllUxdLymIL9gq13+9cI6V305NfTZhzEjFAoGt1efLThAIZ2Tw9+MIBvhekwObDRBj5G24XIxz/yyRa/FVJ65CXj4dQINbq9qsACAPYdbflrv7Z5zGIgtOtIjc77tLx3eW2jfyAkfB8ahNdq7dRYk0fSDcSNtpUx+nndf7QWf13gy+BdMrKH4c9tWxM/m3YD4VA7Izz08WakJTow+6yBrR6XmFU22k4m3qxhPVNEMBDSUVRUhKKiInh00vIUP3plJitfh14jpJkas4p/lVpwwfB8/OXLn3DqgBzVcU671fC97FYrkl3+dUvBpu30Vo3pXdzk19FeaMMNhL7/uQzf/2x+SwOxY7Vc6KzdADbY1FigztUiuYu1/sawgQON+iaPTiDUEujIU3L1QkClN3Unfha9i6I4NjGoMrtdiljLk+ho+VVsFOgZBUJWExfs4op69Mw03p+uLYl1QKWVDepAKIQaoV+O1WLu93sAALNO79/qjI6YuW1we01t7Bxr8T0J2n7Ex58IcYadpdsHMSMU6rLb/z33eCQ6bEohs92qLpbOSnFh44Nn4+XfjgQAPHvFieiS5MCr00cH7CMkZoTMTo01NHlMTVPJr+eV1M0NS6vCmxoLlRgYlDcHE3/+bIvqGG0ht0xeNWZ2u4iWGqHgGSFtUKs3rbSvrKXzs9xwUgyo9J4jfl69poaqQEj42kxG6JdjtarVf2LgZtQeIMGgRsjoZ1+c/t0fR/Uv4vkpraxXff/MBHUyVWbJ5ErJQMRAyqjonzomZoSo3RK31TgcYjAwMDcVGx88W/nlJxZLy3+xigHM+YX5mDqsGywWi6qo0mJp+YVst1lV3avl185IUjd41Kpv8pjqjSP+om4Uduouq26bQEisTaqobUKD24MvN/u6R7941Qjc9O912HXYf4oJ8I230e31W9GU6rKjSicb4w6wakybEdJuq6G3hF8MOpSMkJjF0XmOeDHUG4d4X7BjRWv2HMWlLy3H8Xmpyn3ilJBxIKQfUBt1RReDzl+OGW+d0tbEz1da1aAaZyh/0IjPq6x36+4xGArxnevDbNHQ1uJ/8q59YEaI2i0xxS6vBAqFGFjYNcXSeuTpEbEeSUzrO2wW1fJ5eSrr+LzUgOMz21laFQgJx5c1FwKnugL/XRPqyjot8WJ/rLYR9Y0tYzhzcC6SnbaAK6aqG9x+GSFxaxSRnPEyUyOkfU29QEK872hNI34qrgyaERIDJXn12r6y2paxCVPndSHUCL3U3A/op+KWAu0mEw0ZjaZ+jJace0MIhCrrm3D+89+p+hFFi/j5SirrVec+lEBIfJ1IZITEH6O2zgiF29E8GuqbPLj6tVW6q/o6KgZC1K69+bux+J/T+uGC4d1b9Tp2k8XSgLpYWswAOTQ1QvLqMrvNiuE9MwxfT2/5vO4YrRbIMweNHi8OlNehvsmjZFS6ZSQEeLZxRsEs8WJfUdeE2ibf+9qsFjjtVgwUMhx6dh+phkezg73RmAJNjYWaESqrbvDL+Jzz9LfYdKDC7/1E4udtcHvxxaZDOPWJxUrDRaPMjRwgVdY3YcHmYr9pzyM6GTxxqtOoRshoDzGjJoTqjFDgqbG5y/bgh18qVP2IoqVRkxESb4cyNSY+z2zvrEDEtgNGtW5mSJKERz7ZYjqQ2FlajZPmLMIby/cEPK68ttEvYIpU+FRSWY+1e32F1++u/QXfbD+MRz7dEuRZHQcDIWrXJgzIxj3nDm51oaSqWDrIL2Oxs7QYQPmtGhOOO+eEPN99OvVFYkPFVJcdz1w+XPd9LRaL8vz/rtyP8Y9/jTvf3aiMX7uqScuo2NYscYm4V2qZjkxo/pyDcgMHQuv3lfsFHHptAoDAy+e1gYK2b474nBW7yjDyTwvxwfoDfq/z7Y7Aq9e0011//8aXyVm4tVS5T498/30fbsIN/1qLv36p3hpDPxBq+Qzi1icivQ1oAeOMkCeEjFBrLvyhEjNpvoxQy+1QNowVXycyGaGW9zbqkG7G9pJqvLZsNx75dIup5pYPf7IZJZUNeOCjzYbHrN17FMMf+Qq3vLUh7HEFMus/63DJi8ux63C17jRxR8dAiAiahopB1vCKfYTUX1uRLARCYn/qy0b1xMPnD8Fnt57i93qSBNQ2Z3XmXjs6YHZLDq7kxoaf/nAIgG+KKdDU15i+mX4rqVpL3tpDzur075oS6HBs2F/ul70RA0dRU4CpsW3FVaptRTwe44zQnAAZjmCXKG1GSCtYIPTxxoMAgJe/UW+NoRsIiVNjBtOLRgX1RoG7eK7l/dWMhFNr0uj24sdfKkLuZK3NCImdwvWK0n33e7F27zFV0CR+T8xuKxOIpAqEwm9UKMalehska5kJ/uTp1E+af6Yi7WC5799TaVVD3LRZaEud7xMT6RBXjQXNCAnHarfmSBKmxpq86tqH6Sf3Qf+uKUpmZnz/LOVxuYDXaQscrBj1S8pMdhlmxcb0ycRLvxmpavYYCfKyfTkQMspIyav7Nuwv97vQGQVngbbY2FNWi5PmLFJua7NMYlF3oELyKoMtT2T1mrof7RJ6o4BFzO7JxGBB7yLrFn5WjAKsJo8Xj3/+Eyb/7RvVhV9vKtfjlVTnxWifu9a4672NmPr8d3g1xFqSBlV9W4PqtjZQlj29cAcuefF7/O97Pyj3qWuEIjA1Jpz21tQIiT8nZlZ0mgk8jH4jtaZYury2EW+v3ofK+iYlwPR6JdUfhZ0FAyEiqDM7wcoUxKmIPlktvYx8Xadb/kkZ/XX78azxuHZ8Xzxz+YnKX4/y9hsOe+A3Nwp2slOchsv0p5/cB5nJTtx65gD0y0kO+vnMkvc4k7d+SE3QD7QKe2QA8E3PaDMr4nRdjy6JytfyNJAcVFx0Ynf89dfqzWflv+C1F09xCxK97ItZ2qkxbX2GUcAif8a+OS0/G9uaO1dru4LLxGkvo8yP2yPhpaU/Y1tJFeYJU316U2MNbo8q01Ab5MIezs/ERxv0M17BqPsveVVZniav/meXi7jnbWjJiKhqhCIQCHkjVCMk/jwGCoQkScJTX23Hkm3BG4yGUjtl1o1vrsX/vv8j7nxno5KV80iS6ndYe963LhQMhIig/qvaTJnCynvPxNK7JqJLcstqMG3GwOiCNiA3FQ9MLUB2isuvWDhYh2yjQCgr2Wn4mPzZJhXk4us7JmLVvZMCvodZ8tYecjCTmqC/Mk5cGaadwhBrhIZ2T0e/bF/woM0IJTis6JqqzjjJAYe2RuioMB2hzb6ccXzXQB9JRbUSTOd7afT9lccsXqi3Na8QO2BQqyMWSxu9rhjUiYGT3h/wDU1eVSDe4PYaZltayygANiIGww1u9UIBozHq1beJ35PKAPvWmaXO2kUmEArU1mPJ9sN4dtEOU69ptPOI0XfU7fFi88HA05byHnULtpQo3xO3V1L9UWimrUdHwECICOr0tJnLRW5aAnpnJSNQctqouFWkrZEJVvRtFChlpRhPjWnbAWSnOJFtsGzdDDmwKqtpLpZWAiH9C2Ky066MTZtFEafG7DarkpbXLp932qx+NVDKX7Ee44yQ1tXjeuPeKccbPi7765fbcExoDtnQ5FEFupIkGe7xJo+5WpiOkrMeRrUs4sXTOBASeiEJwZ7e1FiD2+tXexJqlsPsku5QAyHxZ6BB00PL6N9Mgs4UaiSnxiRJUi2f9/X28mDxttKQt0wRz3tplXEn9WB1WyJLiJNg93+0Cec9+x0e+XQLVu4qC/q9lINKr1dSlQm0JiA0o8HtwardR7Fhf3lU3ycYBkI6ioqKUFBQgNGjR8d6KNRGxGAhlJUrgVbam+kW3V2YDgJMBEIGj2cmOw2DJO2cv8Viwdi+WbrHmiH3RJK7SCcEmRpz2q2GPY6SVO0HLMqmm9rl80671S97JgcXbs10ijwuvd3tXXabqZ5Tzy/eiWe/3qncbvSop8bmfP6TUrCuJY+5VjO19szCHfjT/K26z1Ft2moigBa3KtELhOqbPAFrpwCgaPFOXPXKCvxn5T6l6F72zpr9GPHoV1i/71jQsYRaeyYGPvVuj2pqTNteQaabERJep6IueFGykdvf3oCJf12CGuH81DV5cMMba3HN66vx5oq9Ib2eeN5LK40zQkZT53rEZLOZAFXe1Hbu93sw7e8rsMTE/n6Ab+zie0W7seThqgZc9vJyTHt5eVTfJxgGQjq4xUbnE+oWHbJAU/dmXrKXZv8nV7Bi6QCBkNGqMbtOXv3qcb0BGBc4B+IXCNkDT4257FZVo0mReIGz2yxKWl6715jTblVqkWTK1Jjmgi9ncvSmoZx2a1jNN7VZgb8HqIuRjxULlPcfq8PfFm7H+n3lus8Rg7kmExmIYIFQg04Xb7kBpnwhfeLLbVi2swz3fvgj9pa19BmSJAl/eO8HHKttwk1vrgs6llADoUZNBkgMGI2Cg2BTYwu3luKhj42Xnwfy4foD2FtWi6+2lCj31TR4sLQ5eHhv7S8hvZ7ZqTG9P5SMghwxGym+vtnfWktN1CEBvoyQJ0hhfySJGd9YYiBEBGimPcw/T6+I8d4px6NXZhJumxR8R+xemeqMULBiaaMVJumJjqA1QqKx/bLw7o3j8N6N44KOUe+9ADEj5LtIGV0QnYECIWFq0G6zKmOVL4gNyi9KmxJwyeS0vTbzcay2EXM+34oHP97k934uuxXpiaFPC4YyPdLo9sLt8aoyH6t2Hw34HLeJqTHRoYrA0yoNbv+M0OHqenyxqRhjHluELzYVGz5XzE4dNig2F6dMjAJgI42azazFaS2jveiCTY0BUDZgDZcYOK7c3bIZcaGmGercZbuxeFup8euYnBrTmwY0qskR/wmLzzP7q8qoW76W2y8Qim5GSP4sjlb2gWst7jVGpBFKu3u9QOiGU4/DDaceZ+r52oxQsL+MjLI+6YkOw+c6DJbDju6TaWKE+u8FtEz9yJkao6ya025Fiks/06WdGpN/Ycu/jOuapytcDv+M0Fl/+wZ3TR6E0wbmqO7fdLAS6wwyLwkOK6wW9YXbalFvr6AnlKLRRo8XtZoLSLAaCLeJVWOiQxX1Sl2LXoFxfZPXb5rpkhdbph/k7ti6YxGeZ1S8LE47Jjr9f+72ltUgNy1Bt3O4NoARX8tt8NkTdH7uI13IKwYwciGxdkxr9x7DQ5/4Oi7vefw83dcRv5cHjtXhte92Y8rQbshLT9Acp7+ti945E/9lGa2sC8RuMuPildRtF6IfCDEjRNTp9RQCIasl+C8so18Y6YkOv0BBFuq0X7AO1NpNZINt3eG0GWeEkrTF0s3TePLeW9tKqgEAfbOT/TJCgG96R3uxDpS9cdpsSNeM38xUWUiBkNsbct8e8aJopkaottGDPWW1GPPnhcrGt6IGtwcm4ildRp2tRWKjQO37rN93DKc9sQQXvfC97nO13x9xxZdRRkiv35T2dayW0PfsEo83Ou1ikXmwTBygDqgOVtTjkU+34KQ5i/zG1qTzWY0K2sU/uEKpLZIZ/TGk5fFKQXteRZI8vRksEx5tDISINEL5Xdra9h69hT5EI3t3CXq80fRXoIyQXo1QIAkGAZX4XqrjDfoXyVwOm+G0WYKmRkgu7PZ4ff1ldjT33xmSn2YY6MkXz2QTnbNdDisyEkMPhAJtJqtVUdeEmobQ/pJuCnFqDADuencjymr0i4Qbmrx+ReTmx+LVnUo5WtOoBHjiyjxtZkPuL7T1UKX+2AJlhIymxoSfMa+mkP68od1890vqlXpmqKaZDP7hi/2kxEOMlqYbfYblu8rUx+l8n40aOVpUgVDwjJ2W2d8Bbm/bZoTkYDbW3awZCBFphPL3ltm5dyN5aQnIT09AosOGORcPC3q8YSCU5IDTICAJ1ik2X5OyD7ZyzS8QChI41Ta4DQOhJM2mtfL5bPJI2FFSDbdXQnqiA90zEg0DLvlikGWi8NtpsyLJaVN939KTgtcMhVIjVFrVEPIFWbV8Psh7ndgrAwCwZq/xiq56TUPFULg9EjKEcyJJEo7WNGLEo1/hvGe/BeDrSizTXozFPw7u+eAHpYeSLJypMTEjJK9kkl+nR2aiMmUcqHWCHjHoNDpfYjG3eMSJj36FosU7/Y43CpAWblHXFQXb6FcknlMxaDabHTLbLdrrlSK255oZnBojilOhXD+uP7Ufuqa6cONp5mqCtGxWCz65eQKW3DUx6F5dgPEvjFSX3XQfIa1Xpo/G4G5pyu1gf535B0L6AYp8cTqhe7qpqTGHzaosn/d4JWw+6NsdvqBbGiwWC6xWC96/yb+4W858uOxWpAXpaeNyWGGxWFSfN9JTYx6vhP1HA+/2rnW0phFvrtgLr1cKmhH69cieQV+vrtET1hQK4Ls4pSe2nMeaRg+W7TwCwLe9idcrqTNCmgu6OI3z31X7cfELy1SPa7NrZjJC4s+9nG2TAyGXrWUloF7LhEBUgZDBaReDEzFrVFHXhCe+3ObXvdwoS1PXpA6O9YJro8BD/Cdspvmm9neB2c7Ubq+k+rmJ9vL5JqE9RiwxECLSkELICXVNTcDKe8/E3ecGb9JnJCvFhdy0hOAHwvgXhsViCWnVmKggPw3zb54Q9D1k2sDBqKbo+7vPwHs3jgsYCCU6xFVjLcXSbo8XK5tXWg3rka4cM7J3Jk4ZkK16DfmCYrNa0CU5cHZHvqD++aITAPgCyOwgz/G9R2gXhN1HakI6HgDum7cJr3+/J2iN0En9ghe51zS4w84INXm8qmD4cFWDaquI2iYPjgmBkPbCr/1xq9FM92iDygNCY0E5EPJ6JdUFX/w3KfdDElsryHVroQZCYlBmNJUYbN+xUX9aiNeX7RZeR/+8N2pqr/SmW+sa9ccgNlQUgx+9OiPAf1GF2elWr6TNCHmb/x+dgEg+J5waI4ozoV4/tFtrRFOgXxjGq8aC/zMX96tyBKknyNBMJRlNjWWluDCqeWWaqVVjQo1QXZMHC5v7upw5OFf1HO0vefniZ7dZ0CXINJdcjD6sRwY+v/UUvP0/40x1Rm50e011CpftOlxt+ljRG8v3BL1omVmuXt3gNrwgB9PkUWelDlc1qLogV9U3abI42qLlwP8etJmQXYdbgkZ3c+PKqc9/hynPfqsEWeJHUTJCQjZBDs5DnRrT7numR50R0n+dh5tXkvnGahAIab6v9ToBlmGxtPAjL/4cGk0lavcdNBsIaTfrrW/y4O/f/Izj7/9C+fcYSfK4zBZzRwsDISKN1mw/EW1Gy+e1j4l/lYe6aixYXKfNCLnEgmeD90px6V+8xdoPC1oyQt/uOILKejeyU1x+ReTaX/LyRdlmsaBLkvmeNoO7paEgP001fiONHq+pi4mcmdgVRkYIAPaW1QatRzITuFU3eMLeMLPJow76jlQ3qAK76nq3aquQUKfgAk0zeiXfBqqbD1Zie0m1srGvGFzUaDNCtpbeUHoZoRW7yrD85zK/+wF1UNFgkPVT1wgF/6xGU2ParKJe0KPNvMiBobiA3q0KhMxlhMwW+3t0Gio+9tlPAIA73t1o6jVCwWJpojjz/JUn4tcje2Da6F6xHoqhQNNW4i+/ZLFRYRgF3ZeM6GH4WKAaoTevG4tu6Qn4x9WjVMckG2SEtMui5YzNtzt8NSmTh+T6BXLaX/Ly8mszU2N6jILLN64dg1HNQVijZnNQI/npvgaZuw+HFwgBwJbm1VZG43LZrUH/gq5uaAo7I7Rq91HV8v8Gtwc/C5+nst4dsAmiUVbj+5+P4OWlPysBh/h9PX1QSy+oKiHIko8Qg7pnF+1Ao7ulYaVT2DalXLPVRkVtEy7/+wpc8Y8VaHB7UN/kwbz1B5S6HjG4NQrQ6oStN8xki40DIfXr650n8b6q+iac+8y3uLBIXWMl9hEy6imk/T1httjfPxBqGU80dqKXz3+gP/DaAhsqEjX71bB8/GpYfqyHEVCg1RXiL79Epw1VzRczs83URE9eVojB3VJ198ZKS1T/2hCb3Z3ULwvL7znT7zlGq8a0vwC1QduU5qXRquc49DNCdqs16NSYmTHITh2YgyaPF7/75xo0uL2mCqZ7dEnElkOVyrlPT3SEXLeytnk12O8n9keS04bTj++KSU8tVR63WCywW61o8hjXbVTXu8Pebf6RT7eobtc2evDLsZbi76r6JlWwIr5PbaPbcHrqyn+sVN1OS7ArtUbinnvi8+ULuPhRvt1xBE99tV01NWZUI7RFWMJfVe/GP77ZhZe/2YV+Ocn4+o6Jmqkx/fNZ1+SBJEmwWCyGgZD4b88wEGoe776yWhyublBlmvTG8NRX27Gj1JeJO05YSNEgTOEZZSnDrRHy6ywtZLHCrTkLpGVqjIEQEZkUKCMkPiZ+He4+anrP8y0/1wRCJqaWjIqltfVI4nt2SXJgbF//wmCjGiGb1YLMsDJCxuOXz+Pmg5V++zpdNqoHymubsECondBuotslKfRASJaaYMe1E/rqPma3WYAALztvw0HMa+7n01rHahpVgUh1gzYj1FJQO/LRhaZ3uU9LdCiBUE5Ky2IBscGisiu65iL85oq9OKG7b+Wf097SG6qi1jgQqm3wKJvLynVJjSYyQl7J91iCw2Y4MSb+geIxCBia3L5mhac+sRgAdH9WH/hoMyYNzsXG/eV4fdke5X6jgE2eGjtW0wiXo+Xfpvb3hLZJplF2R7vXmBh0GX0u2dGaxpD//ckLA2IdCHFqTAd3n6d4Jf6CO7V5a4lbzujv95gYLITb60gvEHLYLKoCZ8BcIGSUERKLtCVIql+IJ3RP181maRsrioGQtuu1GUaNGoGWC5y2iBQAxvbNwqzmcy/L0lwIzPQoMhJo/6W2vHAc0wQXs/6zXslaAS0X4/1Haw2DoNpG/75KaULRd05qSw8oMXCUL8TaQKi6wY2dpb5gxmmzKt3CtdkouQWD/BxttqbJREYIaFk5ZtR00Wm3QpKk5o7e+sc0eLxYu6/lvB01aIb54Meb8beF21X3GQVCTR4JlfVNOPHRrzD6TwuV+7ULOLQ1QkY1Q26vpAp4xBVzgRKMzy3agRGPfoV31uw3PkgHa4TiGHefp3gl/sJ4aGoBFtx+qrK5q/hXqZjlMNtMTUsvELLbrHDYrKr3CtZQEfB1hr52fF/8+aITAhb7iu+Z7DSaTjMolrZakBlG4GF2ulEr2WX369ibpqmf0naxDkYMWp0Bvm+tbeQZCnE7DT1ygBgo81hW7f8a4hRrVopTKdJXBULNUzN6pTBynY+vf5TvPItF3ACw5aCQEWp0+2U11MXSxtNHcoAXKCN0y1sbMOSBL3GoXH8bjka3N+Bmt7IDx+r8soji1JY4XeX2evHTIV/DyppGjxKoaTM+2sDHOPtlPDUWqE78ya98gdu9H/xofJAO9hEiopCJF8CMJCcG5qYqWRWjqbFQt9jQey+Z3l9u2qkyPRaLBQ9MLcBVY3sHfk/h4p9kUGCtDbwq6tzKeLVL+80Qe+TI5OAo0LRZaoLdr2hZG+QZNWu8+MTu6JudjCd/Xai6Xxx/oL+S2/Iv6GBL0uULp9HF1Wa16G4FkiqsJOyS5FSmSdWBkO81xQCmT5Zmo2J7y1522j3e9gmNLWsa/bM1YoARaOanNkhGyGG34JONB+H2SvjPqn26xzS6PVixS3/1mqhbeoLfuRQDGXGZf5Pbq57Kan6eNnupLZY2Kp4OVCwdbGoMCL3ouaWzNJfPE5FJ4i9I7UVXFQgJF8rwa4T8fz3Iv7DEX8x9s5P9jguXGHxpp+Bk2uCkspU1QtnC1hxyc8jhPTMABP5LNcVl95u6S9W0CTCaqivIT8PiOyfikpHq1Xni9zRQsBNKlu/C4fkY3Sf4PnZGyk1mhIwCIY9Xwn9X+gcHYkYoM9mh/JyKgZB8wZYDkMcvHoozjlf3lXLYrMrUq3ZrE/GCX6MzNWa2Y7gcEBjVHIv/3gwbKnq8OGYwHSY6Wtuoqs0B1LU6qqkxgy0xtBkhbbG00dSY3vJ5mZliaXEhg8cr4aY31+K5RTsMj29ksTQRhUr8Jaj95SH+Mg4zCaSilxGyNV+Ak5w21DZ68PuJx4UdaGlJkjp7ZTw1FqihYug1QheP6I6SynqcfnxXJDiseGP5XtxyxgDd9xL5psYCZ4SMpsaMfvGLtVR6QZj8fqFMjWUmu/D05Seiz93zTT9HFDwj5LuYNQSosXlbp3ZELKDvkuRUCsB1p8aar8FWqwW5aeo95Zx2K2zN82riZrdeTV2XXiCkzSAZkTNCRt2nxX3+jHr7NLkl1Wo7rXH9srB8VxmO1jQqnzvVZUdVg1tVeyUGJ26Puq1DXZMHGfDP3vgFQiYzQmJgaWbRmPjv5dsdh/H5pmJ8vqkYN585QPd4sTt4LDEQImpHjLrfAuqiZaMgIhRWnYut/Ivrn9eOwfp9x3DteP1VTeFSZ4SC71gPtPyytlrCmxpLcNhw+1kDlduPXTRU+TpQIXVqgt3vr2RtjZBRsbSpQEjnGDkTFMpf0K39YztojVDzhb8+hP3YAPWFNT3RoXwm7dTY3rIapWjXarH4bUfjtFmV6VLxwq3NemgDoacWbMOzX/tvmqrn0x8OYtnOI37fX2UMdjEjpH8eahvdftuNiKYW5mP5rjKUVjYogV9aosMXCAnPE4MiXwPKlvMlH+dXI2RyakxbLL29pEr3OCNiIGQm28bl80QUsqwAXa8THDa8/NuRkCQJn5soygxGL+sg/2U8uk8mRvcJvudVKBw2q+qXsFETRqPfmXarb7+1MX0zsap5n7LW6pqagIemFuChT7b4PZbisvv1gjGfETLowB1kaky+z2hq7Jwhefhis/p7L09xWiyhbx8D+K8a01KmxkLYjyrZaVNlKew2q+7U2NJth3HrWxuU21YL0FUnIySft5pGt9LzR5sF0X4PzQZBAPDG8r0A1PveiVzi8nmDqbHK+sDZJznTJQY68s+TeJ/2PIvtBuTjtBkh7f51Rl20vZIEj3BsVZAxa4nT1jZh5ZrXK+n+YSUv6491Rog1QkTtyGWjeuKKMb3w0m9G6j4+eUgezjnBvwlhOPT2jNJrAtdat545AEO7p2Pa6J6qvkLartMyozoN+YL/1vUn4bSBOX6PD+2ufxELZsb4vn4FuoBvetC/WFqTETKRQZDZrRakusRAyLhYXa8A/t4px+OpaYV+98vX6NZOYBrNxgUrltaTkeT028zU0fwG4oX9g/UHVMfYrP4ZIZe9pUZIknzbm/xrxd6QL+Jm/PBLhe796oxQeI0HM5OdftPMciAk/rvTLvMXA0f5Me30XFMoxdKtaJwoZlDFH1Gjn4142WuMGSGidsRpt2LOxUODHxgBenuOhdutOJDbzxqoTE2ZWT5vVLQpZ7CsVotqZdkfpwxG1zQXTh3gHxyZpdcryWKxqIqlExxWpCXYYbW01LQYFUvrBTJ2m0WdEdIJluTzo3fhOKsgT3c6Ua/oPRzd0hNVO8XLxIaKZqUnOvwuuHL9WaAGlBadqbHUBDsSHTblvF/96iocKK/DymGt/4NArtEJRvx+hBtHOGxWdEly4EhzqwHflJ/v586oRgjQBkLqvks3n9Efz32907+PkMkaoVCJU2NiL6O6Jo/uHzYNyqoxZoSIKA5cOda3x9odZw8CEP4v9NYQLyhGq8aMuuLahOeKAUqyy44LhncPax+yYGMRpw/7ZafAYrGoghGjQEg322O1qgqI9S4OzgAZIaMCaluwXXRNuujE7rh6nH/7Azn7oP2rf0L/bMPXSk904LZJA5Gd4sQfzvH9vOktn9eyWtR1VCN6ZSAjyQmLxaIEznKwJneRbo0UExvcApGpcXHYrKpVjy67VZlqUjVUdBtnhOQsmxzMdG1uVKmdJmwwsWosPz1B95jFP5Xisx9bzq3YUkCcGhOn2LRBsvwecqYqUPPQtsBAiIgAAH++8ASsuW8SzirIDX5wlIjZC6NtOYwuTuIFXwwiwm0oKTKaphMvgPJ+UGL2KC3BIBDSmxqzWVQXeb2Lq1w3pfeZ5BqM356kDlYi8fkB33L3Ry44AVeNVW9KbLR8/s3rxqpW8d01eZDydUaSA32zk7H6j5Pw+4m+7tx6NUJa8vf40pE90KNLIp6/coTymNmgJRRGP4NakfibQdv+weWw6jYr/XijeuuUCp0aITkjJP8shjQ11vz91PvsHq+Ea+auxu//vU5paCl+38WMkKoJpBAIPb1wO4Y/vAA7S6tYLE1E8cVisah66kQokRASMathFHycMyQPFwzPR5ckJ+Z+v0e5X5xWE18nEvUHiQbbiIhJmH7N/ZTE3+lJwsXEbrUoQYNetsdhs2r6CLW8+JO/LsRTX23H36YNV47Vkj/zoxeegLKaBnz2Y3HzeCLzjZQvjPdMGYxu6QkYkp+Oa+auVi6celNjYq1KQX6a8rWcKROnT+QsXqCZGfn4v/66UCmK1o4vkoy2htEKZWf2rqku3SaeDpsmELLbdBt6ajO1YnsDpVjaqw6ETE+NCZ2l9erYxCm6yromZKe4VPVL4nPE9zxa04i+2b7v19MLfX2F7nz3B+X8cmqMiOJeWxUzitkLoxohu82KZy4/ETNPV+/zJQY/4tRYuJ21RYkGYxEvxP1y/BtLigGU+Ney0Yowo4zQJSN7YNndZ2BIvq/gW28aTCxuF7NSchZl4qCuAPw7M5sljy3FZcesMwagf3MGTK4REjMDtzdv+yJOwYiF4OmJ/tOUZnojiUGddj+taARCgbaDEYVSYKzdmFdmt1lVP/MuuzVg+waZuBpNKZZuDmbkn79QOku7AwVCOoslagx6DYnvcelLy/HwJ1tQUlmv3LeztDpu+ggxECKioCJ5kQl0uRMvdEZ1OTLtRUqsEXIYfB2uxAAXpNF9uiA7xYUzB/tPKYqfR+y6qzcm7dRYoItDoIwQoN9Z/K+/LsQdZw3Ev68/yfB1A9FmR+QxeLwSdh+pwZJtpQCA6yb0xa2TfA30xIuhWDult5rOzBReoFgpNQqBkNl+XNoanEB6dGkJRMWfYbvVoq4Rs1tNbVmx9VDLfmraPkJiRqiu0aN8PwJ1lpan1fTeW8z6ya8hZoTEFXPa95j7/R6MfWyRcru6wR03naUZCBFRULc2d4a9cHh+VN/HGsJUR4LDpgoWxBohMQsUiYzQhAArzv57/Un4/u4zgk6jBMsIaS+EoW6xYVVlxFq+lgOhzGQnbj5zALpn6GckgtF+P+TXbfJIOP2vS5Sl5Xor7HzPb7lfr4jcTEZIr6WD3utHitm6I6MMix7x/MvFzID8/VdnEAPtdadHXjUmZ6gSnVbl/jOfXIJznv4GXq9kMiPk/97qZfy+16hpbMkIeYRmktq6JP3x+l6Py+eJKO7NOLkPxvbNwoDclFa/Vq+sJGw6UKn7mDqDEPwikJbgUIo2VXVBdvHr1gdCU5uXYmcmOfHu2v24/pR+ymPa/caMiAGCXrbHYbNqgqVAu88Hzgg5dDJCraUN9IwCF6MshljzpZcREqfWEh02VT2KTK8pnyyWNULahoWBiFNjuWkJ+PlwDQDf9zRJNTVmC3kTU6VYuvlUij9zByt801IHyusMGyp6vJKSTdJ7b73GjrUN5jJCerY1d66OdY0QAyGiDijSS98tFouq2LU1iq4cgUc/3YKbJh7n95j4y9PMRSAt0a4EQgnChVZszOiIQCBgsVhwfqEvGzZhgPGy8ECG98zA7iO+i55RjZCYAQi8+7zOPnBBpsZaSxuY2gwCNaO6FnGaSW811OmDumJ7SRVuOXMA0hIcuG/eJr9jAn0Uo6Clb3ayct5DZTYQMpP9kOWkOPHni05AZZ0b+4/V4vuffTvSa6dGXQ5zNUKilhoh33j0snNbD1UGLJaWn6sXrNcK2R85cFVnhFp+8TSZCA7l31OsESKiiLt4RHcAwPF5qWG/RrSS1b2zkvHK9NEY2dt/iw7xF7S2GFaPuDy9b1ZLsbLdoKdQLMy/ZQIeu2gopha2NPjTy6b0ykxSTRmFOjVmi3JGSJtxMcoIGU2NiYXjehmt288aiE0PTcbvJ/Y3fI1AU2NiIe65J+QpX+ekurDy3jPRMzP0KUGzWaZgNUJiYJqV4sJVY3vjponHqf6N2W0WVbDpsluREOLUWF2jB5IkKSvv9M7jT8VVhnsW+jJCLe+vVd/k3+FaDI7EjFAoncZZIxSHioqKUFBQgNGjR8d6KERhmTioK766/VTMmzk+7NcY1byXWFYrGhGGyihlb0QsNpX7+ADqX6yR6qNjlkUTQg7JT8eVY3vBadOfGnvj2jGYPCQXD50/BD0zk/CHcwbh0QuGBAxg9AIJsUZK9fkjFAhp2xkY1V4ZZfLEaS29FXZAS9Bq+BoBAqFBeb6MZaLDpqrDcdmtyE1LQJcwNuQ1XSMUJBBKEmp/xH9P4sexW9WrBl12W8CM0CUjevg1Paxr8qjaDyTonMdtxVWGXcB9NULe5vfXWzXW8jkb3F5IkoQaYWpMnRFqP4EQp8Z0zJw5EzNnzkRlZSXS08Pbn4go1gbkhp8NAnzFtevvP8uwn0805KWH9le7mEHqLSwLV9XLRGiLidYyyticOjAHpwp7o8kNBgPRmxqzGtRI6QVUM07uo+rBZEaSQxsIGdUI+f+8yAHrF7edgvLaJtXKKf3XMAqEjJ9zw6n9kOS04eIR3fHG93uV++VzbSbDqJVisgA72NSYeK6yUly6x9isFlXfqUDF0n+5dBguG9UTe8tqcNoTS5T765s8qmDEbrPCYbOopqm2Fleq+hWJfHuNye+vVyzdkv3Zd7QW4x//WrV8f+3eY7igaBlenzE6aAG5uH1JrKfGGAgRkaHWbEsRjl8N7YYdJVVKNiqYw9UtjemM6mvaOiNkRLwOt3aVTLDpvmA1Qg+dPwSXjuyBXz33nan3c9qtfu9ptVp0d7QX63/+c91Y/PmzrfjzRb798Y7PM1dnZnRhDFQsneKy48bTjvMbg3yuw8mMpbj0O4NrBcsIiVNRaQGyTGLg5XIYL5/v0Vxw3T0jEU67VQk6FmwpwT++3aUcZ7Na4LBZ0eRpydqUVTcGzAh5AtQIic/764JturWIG/eX4/mvdyqZJSOD8lKxZu8x33txaoyIyMdqteCOswfp7h6vp6x5g0qtSPcRCsU5zfUpx2mmf8RRtHYqIFgBuKpGyCATEkqmz8xeazIxID25fzbm33IKhvfMMP1e2tcQBZoaE6lX6Pm+DmfPtWBL8i8Z0QNA8OXzYgAhZqa006hmV43J58dus2LtfZPwuLAR8xNfblO+tlksfj9r9U0e1AfsLO37Wi84EZfPB1qQUdfkCXpOju/WkrEWM5ixwECIiNqtx5ozDfLGnbJId5YOxf+eczz+cukw/PcG48aFrQ2EgmWEzBRL613ozji+q+6xRo0F9V471CXfeoxqY8wmdfSaV4bzY5AaJCPkbL6AB8sIuU1uwaFtqOkyKBoXM16pCQ7kGmyQarX6Z3Ya3F7dDtFA8IxQlTANFojVEvycDBKyg6wRIiIK03nDumHccWepNvcEtNtttO1fm4lOGy4b1TPgMa1dyRXsM+k1VDTzGq/NGI0+d8/3u99w01mrFfVQX/CMLt6hMAqmzJ43sUhYfq1wznmwrJl8ATezVFyPNkklZt7sVkvQjJBMMkjP2K1WpCXYcVizt1llvf7GtuKmq3qBkNHztKwWS9CM0EBhcQNrhIiIWkGv8FP8CzPWf23K8sPs6KwnWAG4mT5CoZyXZIOAQK+XUEQyQhGcGpM/p9FzbVaLqsBY/TrmMm9Gzw+VuFzf45UM2whoz3GfLP1VeFaL7+dObtooq6gNHgjpfR8r68wGQsFXjeVnJGLm6cehySOp2mDEAgMhIupwjFZoxVLPzCS8NmOU7oajoQqWETIzNRbKajqjzIhejVCw4MEMo2DKbJmPqkbIZpwRykp2YtndZ+D4+78I+jp6Iv2zJX5ut1cyPA/acfXLScF7N47Dhv3l+NP8rQB8wYjFYtHdUqW8Tr+2zrdqLFBGyNzUmMVERshus+Cuyceber1oYyBERB2Oqj9LnKwaA4AzjvffmDUcwS7ADhNTY2KB6rXj+6oaPmoZZWj0XjsSwUGrp8bEVWPy1JhOFOW0W5HgsMFqAfSSOsECIWeAny1xRd05Q/LwxeZi/M9p/dTH+D2n5R63x2s4ZaRXQzWqTyYqhIyNfK50AyGjjJAkweORM0L+n73K5NSYxRJ8ujBSjT4jIT7+VCIiipJ46SMUScFWwon7qxkVi4v3nzesG07s1QUA8MSlwwAAf77oBOH9gr+GzOz0VSBRmRoLELQZfT69hoR6z9cjBl5PTSvEG9eOwZ1nDzI8XsvtlQx/do06Tovjkc+V3pSstuuznNkLmhGqM1ssbSIjFEf/LuNnJEREURBPGaFICXYRUdcI6R+jDqZa/nr/9aie+OnRc5Sl4UDL6ii/cQivkeqy4+pxvdEzM3CzRDNau2pM3M5Dzi4l6mR35HNgGOgFy7wFCJTEwCvJacepA3P83idQk0e3RzLcz80oEHaqAmDjQEhLnvr01Qj57tOtETJdLB181RgzQkREbSRSW0zEk9BqhIzqbdQXalGCw6bZpiP4VNX9vyrAIxecoHtcqIwa7JnPCPk3VPzDOYP8ponkzxhusBxwP7hW/tylJNgN+0UZBVCqjFCAqTGZfJ7k9gjeIMvnTRdLW81khOLn3yUDISLq0MLZWiHehVQjFODz33feYFx/Sl8M7ubf8dlMwbl4MTO7QakZVqtFfxsRk99LcWpNDqp6dEnCsrvPQLawxUWwqbFgAtUImWngOLUwH4B677W/XDoMY/pmYubp/UPOmohZHPm5eUKPofRE9eosuW+RvGzfHWTVWI1B/yEtq8WirBqbNFi/Li6eMkIsliaiDkfbsbejCfbXtNnd5687pZ/hY+rXM1p63vI+aYmRvZy47DY0edQ1KeHUCGmnt1T70MlTY2FelAMFUIG2A5GN7N0Fi++ciG5CsHLZqJ5KH6oKkxkYvfHIgZjTbsWjFwzBkepGLP+5DKv2HFWOSXbZcaS6UZkaq2v0oL554+PWtEEQp8ZumtgPP/xSjlJNL6N4yggxECIiameC/TVtNhAyy+iCL97dKwK1QSKX3Ypq9bXTdHfoQEv47Tb/TFewWiAjAYulTZ73vtn6PYB8rx/a986pkxECgN+O6wMAWLdvpep4eUpM/r+8CSpgXLBuhgUWZSNap838isNY4dQYEXU42Sltu1lsWwuWGDGzfD4URhf8I1Ut/WgC1aKEQ69GJZyMkFfTdVnMRMjvYSbg0KtbClgsHYEp2VC/d8G+79p2APLUmF6fqNZ0e7YIGSG9fcRsVktcTVkzECKiDmdM30zcPmkgiq4cEeuhxIS60DkSgZD+axRX1re8TxSbC8rMBhfi59d2fdarfQqU2Zky1LeJ7g2n+k8jBqoRish5D3GJuRi86J0rceWcxQIkNAdAepvLtmZHeI9XUoql9V4nnrJBAKfGiKgDslgsuHXSgFgPI2qC1UAZTZGEKxYtCPSmZsJpPaMNhMQVcHKAF+jzFV05ApX1bqzYVeb3WKAAamy/THy04WCow1WxWi2qxozBBAtexCnDBLtNqY3SrhoEWpcR8nilloyQXiaNgRAREUWTePGJxAyEdrWRlnbT20jQ6yUUznSTNogINSNksViQnujQzVAFet5vTuqNk/plYWzfzBBHrHkPqzVoTx6ZGLzo7X8mTo0lOKzKuUjSmRprTbG02yspnaVddiu0I2FGiIiIIuq4HHXBrTiVZTaboOe+8wZj4dYS/Oak3gGPG9WndRd7PbpTKmEEQh7NCRDPjfweZqag9DIkgQIhp82KK8b0MjtMQ3abBSZXraunBHW+8epGkzYlExbpGqFGt1cJxBw2q9/PYKSnUVuLgRARUXsjxAMfzxqPfjkpqofFC6K2WDgU153SL+AS+7nXjMZ/Vu7DnIuHhv0eRlqbEeqWnoBDFfU48/iuqvv1MkJmpv70MiRGHbe179MaobyOWJfk1ckIuTQZobML8rDpQCVOG5CDl5fu0ryWcXfvUb0zkZpgx5HqBmz8pcLvmLqmlsjNabf61ZgxI0RERK0iZkaG9cjwe1wMhNISIj9tJZs4qCsmDuoa/MAw6NUIWUJIJCy64zSUVTf6bfmhqhGyB95iQ6S3DDxgH6EIrYrSvsejFwwxPFa1aavu1JhQI+Sw4cITu+PCE7ujQmcTVqMkWbLTjnduHAcAuKBome4xdUIKy2Gz4vkrT8QlLy5X7ounHkIAAyEionZn3HFZKOyRjoG5qbqP26wWvHXDSahr8qBLcvtsJaCXgQllaizJaUdSpv8lTr9GqOW+cf2ysHxXGTI0dU96WaOAW2xEqMBcHO+nN0/ACd3TTT1PLyOktwcboB/0GGWEXDp7tmmJGSGHzYKRvTOx/J4zMG7O1wCYESIiolZy2Kz4aNaEgMec1C+rjUYTHa3pIxSIXadGSLzo33xGf1w0ojtOGZCtep7exbtNMkI6fY/M0KsREoulxYBGL+gxilUCNauU1Tb6GjM6bVYlSxXpJp+RxECIiIjijl5GKBKxhV0vIyS8l8thU7a4EOkFNoGWq0fqYi8WFocSXOmvGmt5LXGlmF7yx6jhobYpox55akwM3MTzHqkgMVLiq3SbiIgI+jVCkQgubKo+QvKqMfEirf88/c7S0W2oqH2dUF5SNxASzumpA3KUr0OZclQFqAaF+PLUmFGna6k1SxmjgIGQjqKiIhQUFGD06NGxHgoRUafUms7SgYiBhV2noaLRe/TMTMTZBeqd1Fu76aoZ9jC3S9GbGhPvuWREj7Be11RGqMk/I2SmID1W4ndkMTRz5kxs2bIFq1evjvVQiIg6Jf0aoda/rk0ILOSCaDP1KxaLBX+/ehRuPqO/cl/ATVcjNP0jZrBCCQT1ki6nD+qKM47vikcvPAHpQjF4KPt+makRqmv07yodb3VBIgZCREQUd3SXz0cguBCnwfLSEnz3hdmJO9BmrZG68Ivv0dqPn+i04bUZo/HbAA0yx/bNxNxrjGdDxOm1ayf0BQCcNjBHdUydXCwtbvUSZ3VBIhZLExFR3NFrqBgJYoYltzkQEqfLQglgAh0bsWLpMMcWrmsn9A3YG0qcGju/MB+Du6WhT1YyBt73uXK/MjUmFnrHcUaIgRAREcWd1ux1FYgkVMrIgZAjyK7tRgIdG6kMiD3MqbFwDc5LC/i4GKBaLBbdXlZynXZrtuloSwyEiIgo7kTrIloudFHOam42aWbVmEysvQkU7CQ4IzN+M4XckfDV7afiWG0TemUlBTzOTLG0LJ4LpEUMhIiIKO7o1QhFwpHqBuVrebom3F49Roee1C8zYuO3hbl8PlQDDLqUa4WSqTPqsxRfi+dZLE1ERHEoWlNjR6oa/O5zhB0IWXSDkz9OKQhrbHpscdaIMKSMEKfGiIiIwhO1QKim0e8+Ryumn6wWC7zN82XTx/XGb8f1Qf+uKa0bpOb1la/joOA4IYRMV6DO2/GkfYySiIg6lWjVCJ3S37eH2OBuLUXBqu7NQd5W0kzsiMFJfkZiRIMgQD0dFgdxUEhjiFYwG2nMCBERUdyJVo3Q/106DO+u+QWXjOyu3BfuqjHf8S1fR2N5u9g7KR6aEurs3GHIqM9SnO2wwUCIiIjiT4orOpen7BQXbpp4nOo+h9V8B2QL1I/bohyoqDNCsQ+E9LbuMNJels+3j1ESEVGnMiQ/Ddc1dy6ONnsI3ZsDTY1FaqNV1etbzI+tLXhDSAm1l+Xz7WOURETUqVitFtz3qwJ0S0+I+nuFu3xee7wtWIFRGMRAy0yTxq6proiPQRSJjJA2mIw1BkJERBS32iIJYg8x2BDZ2jAjZCZI++e1Y3BSv0y8d+O4iI8FiEwfoXjDGiEiIopbkdhoNZhQgo30RIfqdrSLpVU1QiZef3C3NLx1Q+SDoHvOPR6f/nAI14w3P11plBHS1lnFWvsI14iIiKJEDGAsQa6Kvz2pDyYN7or/u2QoAHXgZA+wG3244qFAGgD+57Tj8MnNE/wCQdlbN5yE4/PU3alZI0RERNQOiNfrYFNjiU4bXpk+GtNG9wKgrRGKxvL5iL9kVJzULwsv/mak6j7WCBEREbVSWwQCodbhiMTgJ5Suy6Zfv71EQvCvkWJGiIiIqB1Qb2MR2nPFOCXRGflAKF6mxszQZsTYR4iIiKiV2iIOsLdiY1NVRsgRjeXzEX/JqNFmhJztpLN0OzrFRETU2bTFCiNrKwIh8fhQdmY3qy1WzUUKM0JEREQR1vY1QqE+t+XraARCcbC9mGl2TfqKNUJERESt1BZxgGr5fCsyQolRCITaU7G0zaadGtMPMaLd/TpUDISIiKhTC6VbspYlyhmhWE6NndQvEwAwrEe6qeP9Vo1pzuubvxuL8f2z8LdpwyMyvkhhZ2kiIopbbREIDMlPw5nHd0VeGPuaNbq9ytdRKZaOYSBUdOUIvLv2F1w8orup47U1Qi5NRmjCgGxMGJAdsfFFCgMhIiKKW20RBlgsFrw6Y3RYz23ytCyBikYfoVjWCGWluHDjaceZPl47jafNCMWr9jFKIiLqnOK8RKZByAiZ2QssVNF4zWixWi2qwK29bLraPkZJRESdUryHAY1uT1Rfvz01VATUK8e4aoyIiKiV4r2PTqPHG/ygVmhHCSEA6gaQ7CNERETUwYnF0tHQnjNCnBojIiJqpXgPA7xR3i6ivWWEqhvcytfpiY4YjsQ8BkJERERxKislvpoPhiI9qX0EQlw+T0REcaudzQxF3OVjemLN3mOYODAn1kMJSaHJJozxgIEQERHFrbbYdDWeuew2PHfFibEeRsiG98yI9RBM49QYERHFrc6eEWpvzhmShxSXHTdONN+IMdaYESIiorh1Qvd0/FRcFethkEkvXDUCjR5vVPZdi5YOnxHav38/Jk6ciIKCAgwbNgzvvvturIdEREQm3f+rAtxwaj/Mv2VCrIcSEDNXPlarpV0FQUAnyAjZ7XY8/fTTGD58OIqLizFy5EhMmTIFycnJsR4aEREFkZ7owL1TBsd6GEG1l5455K/DB0LdunVDt27dAAB5eXnIzs7G0aNHGQgREVHEtJcuyuQv5t+5b775BlOnTkV+fj4sFgvmzZvnd0xRURH69OmDhIQEjB07FqtWrQrrvdauXQuPx4OePXu2ctREREQtmBFqv2L+naupqUFhYSGKiop0H3/77bcxe/ZsPPjgg1i3bh0KCwsxefJklJaWKscMHz4cJ5xwgt9/Bw8eVI45evQorr76avz973+P+mciIqLOpb10USZ/FkmSotwg3DyLxYIPP/wQF154oXLf2LFjMXr0aDz//PMAAK/Xi549e+Lmm2/G3Xffbep1GxoacNZZZ+H666/Hb3/724DHNTQ0KLcrKyvRs2dPVFRUIC0tLbwPRUREHdYnGw/irwu24cWrRqIgn9eJeFFZWYn09HRT1++YZ4QCaWxsxNq1azFp0iTlPqvVikmTJmH58uWmXkOSJMyYMQNnnHFGwCAIAObMmYP09HTlP06hERFRIFML87H0rtMZBLVjcR0IHTlyBB6PB7m5uar7c3NzUVxcbOo1li1bhrfffhvz5s3D8OHDMXz4cPz444+6x95zzz2oqKhQ/tu/f3+rPwMRERHFrw6/amzChAnwer2mjnW5XHC52u8Gd0RERBSauM4IZWdnw2azoaSkRHV/SUkJ8vLyYjQqIiIi6ijiOhByOp0YOXIkFi1apNzn9XqxaNEijBs3LoYjIyIioo4g5lNj1dXV2Llzp3J79+7d2LBhAzIzM9GrVy/Mnj0b06dPx6hRozBmzBg8/fTTqKmpwTXXXBPDURMREVFHEPNAaM2aNTj99NOV27NnzwYATJ8+HXPnzsW0adNw+PBhPPDAAyguLsbw4cPxxRdf+BVQExEREYUqrvoIxYuioiIUFRXB4/Fg+/bt7CNERETUjoTSR4iBUAChnEgiIiKKDx2moSIRERFRNDEQIiIiok6LgRARERF1WgyEiIiIqNNiIERERESdFgMhHUVFRSgoKMDo0aNjPRQiIiKKIi6fD6CiogIZGRnYv38/l88TERG1E5WVlejZsyfKy8uRnp4e8NiYd5aOZ1VVVQCAnj17xngkREREFKqqqqqggRAzQgF4vV4cPHgQqampsFgsEX1tOVpltim6eJ7bDs912+B5bhs8z20nGudakiRUVVUhPz8fVmvgKiBmhAKwWq3o0aNHVN8jLS2N/8jaAM9z2+G5bhs8z22D57ntRPpcB8sEyVgsTURERJ0WAyEiIiLqtBgIxYjL5cKDDz4Il8sV66F0aDzPbYfnum3wPLcNnue2E+tzzWJpIiIi6rSYESIiIqJOi4EQERERdVoMhIiIiKjTYiBEREREnRYDoRgpKipCnz59kJCQgLFjx2LVqlWxHlK78s0332Dq1KnIz8+HxWLBvHnzVI9LkoQHHngA3bp1Q2JiIiZNmoQdO3aojjl69CiuuuoqpKWlISMjA7/73e9QXV3dhp8i/s2ZMwejR49GamoqunbtigsvvBDbtm1THVNfX4+ZM2ciKysLKSkpuOSSS1BSUqI6Zt++fTjvvPOQlJSErl274q677oLb7W7LjxLXXnzxRQwbNkxpKDdu3Dh8/vnnyuM8x9Hx+OOPw2Kx4LbbblPu47mOjIceeggWi0X13/HHH688HlfnWaI299Zbb0lOp1N67bXXpM2bN0vXX3+9lJGRIZWUlMR6aO3GZ599Jv3xj3+UPvjgAwmA9OGHH6oef/zxx6X09HRp3rx50saNG6Xzzz9f6tu3r1RXV6ccc84550iFhYXSihUrpG+//Vbq37+/dMUVV7TxJ4lvkydPll5//XVp06ZN0oYNG6QpU6ZIvXr1kqqrq5VjbrzxRqlnz57SokWLpDVr1kgnnXSSdPLJJyuPu91u6YQTTpAmTZokrV+/Xvrss8+k7Oxs6Z577onFR4pLH3/8sTR//nxp+/bt0rZt26R7771Xcjgc0qZNmyRJ4jmOhlWrVkl9+vSRhg0bJt16663K/TzXkfHggw9KQ4YMkQ4dOqT8d/jwYeXxeDrPDIRiYMyYMdLMmTOV2x6PR8rPz5fmzJkTw1G1X9pAyOv1Snl5edITTzyh3FdeXi65XC7pv//9ryRJkrRlyxYJgLR69WrlmM8//1yyWCzSgQMH2mzs7U1paakEQFq6dKkkSb7z6nA4pHfffVc5ZuvWrRIAafny5ZIk+YJWq9UqFRcXK8e8+OKLUlpamtTQ0NC2H6Ad6dKli/TKK6/wHEdBVVWVNGDAAOmrr76STjvtNCUQ4rmOnAcffFAqLCzUfSzezjOnxtpYY2Mj1q5di0mTJin3Wa1WTJo0CcuXL4/hyDqO3bt3o7i4WHWO09PTMXbsWOUcL1++HBkZGRg1apRyzKRJk2C1WrFy5co2H3N7UVFRAQDIzMwEAKxduxZNTU2qc3388cejV69eqnM9dOhQ5ObmKsdMnjwZlZWV2Lx5cxuOvn3weDx46623UFNTg3HjxvEcR8HMmTNx3nnnqc4pwJ/nSNuxYwfy8/PRr18/XHXVVdi3bx+A+DvP3HS1jR05cgQej0f1zQWA3Nxc/PTTTzEaVcdSXFwMALrnWH6suLgYXbt2VT1ut9uRmZmpHENqXq8Xt912G8aPH48TTjgBgO88Op1OZGRkqI7Vnmu974X8GPn8+OOPGDduHOrr65GSkoIPP/wQBQUF2LBhA89xBL311ltYt24dVq9e7fcYf54jZ+zYsZg7dy4GDRqEQ4cO4eGHH8Ypp5yCTZs2xd15ZiBERKbMnDkTmzZtwnfffRfroXRIgwYNwoYNG1BRUYH33nsP06dPx9KlS2M9rA5l//79uPXWW/HVV18hISEh1sPp0M4991zl62HDhmHs2LHo3bs33nnnHSQmJsZwZP44NdbGsrOzYbPZ/KrjS0pKkJeXF6NRdSzyeQx0jvPy8lBaWqp63O124+jRo/w+6Jg1axY+/fRTLF68GD169FDuz8vLQ2NjI8rLy1XHa8+13vdCfox8nE4n+vfvj5EjR2LOnDkoLCzEM888w3McQWvXrkVpaSlGjBgBu90Ou92OpUuX4tlnn4Xdbkdubi7PdZRkZGRg4MCB2LlzZ9z9TDMQamNOpxMjR47EokWLlPu8Xi8WLVqEcePGxXBkHUffvn2Rl5enOseVlZVYuXKlco7HjRuH8vJyrF27Vjnm66+/htfrxdixY9t8zPFKkiTMmjULH374Ib7++mv07dtX9fjIkSPhcDhU53rbtm3Yt2+f6lz/+OOPqsDzq6++QlpaGgoKCtrmg7RDXq8XDQ0NPMcRdOaZZ+LHH3/Ehg0blP9GjRqFq666Svma5zo6qqur8fPPP6Nbt27x9zMd0dJrMuWtt96SXC6XNHfuXGnLli3SDTfcIGVkZKiq4ymwqqoqaf369dL69eslANJTTz0lrV+/Xtq7d68kSb7l8xkZGdJHH30k/fDDD9IFF1ygu3z+xBNPlFauXCl999130oABA7h8XuOmm26S0tPTpSVLlqiWwdbW1irH3HjjjVKvXr2kr7/+WlqzZo00btw4ady4ccrj8jLYs88+W9qwYYP0xRdfSDk5OVxuLLj77rulpUuXSrt375Z++OEH6e6775YsFou0YMECSZJ4jqNJXDUmSTzXkXLHHXdIS5YskXbv3i0tW7ZMmjRpkpSdnS2VlpZKkhRf55mBUIw899xzUq9evSSn0ymNGTNGWrFiRayH1K4sXrxYAuD33/Tp0yVJ8i2hv//++6Xc3FzJ5XJJZ555prRt2zbVa5SVlUlXXHGFlJKSIqWlpUnXXHONVFVVFYNPE7/0zjEA6fXXX1eOqaurk37/+99LXbp0kZKSkqSLLrpIOnTokOp19uzZI5177rlSYmKilJ2dLd1xxx1SU1NTG3+a+HXttddKvXv3lpxOp5STkyOdeeaZShAkSTzH0aQNhHiuI2PatGlSt27dJKfTKXXv3l2aNm2atHPnTuXxeDrPFkmSpMjmmIiIiIjaB9YIERERUafFQIiIiIg6LQZCRERE1GkxECIiIqJOi4EQERERdVoMhIiIiKjTYiBEREREnRYDISKiECxZsgQWi8VvnyQiap8YCBEREVGnxUCIiIiIOi0GQkTUrni9XsyZMwd9+/ZFYmIiCgsL8d577wFombaaP38+hg0bhoSEBJx00knYtGmT6jXef/99DBkyBC6XC3369MGTTz6peryhoQH/+7//i549e8LlcqF///549dVXVcesXbsWo0aNQlJSEk4++WRs27Ytuh+ciKKCgRARtStz5szBG2+8gZdeegmbN2/G7bffjt/85jdYunSpcsxdd92FJ598EqtXr0ZOTg6mTp2KpqYmAL4A5rLLLsPll1+OH3/8EQ899BDuv/9+zJ07V3n+1Vdfjf/+97949tlnsXXrVrz88stISUlRjeOPf/wjnnzySaxZswZ2ux3XXnttm3x+IoosbrpKRO1GQ0MDMjMzsXDhQowbN065/7rrrkNtbS1uuOEGnH766Xjrrbcwbdo0AMDRo0fRo0cPzJ07F5dddhmuuuoqHD58GAsWLFCe/4c//AHz58/H5s2bsX37dgwaNAhfffUVJk2a5DeGJUuW4PTTT8fChQtx5plnAgA+++wznHfeeairq0NCQkKUzwIRRRIzQkTUbuzcuRO1tbU466yzkJKSovz3xhtv4Oeff1aOE4OkzMxMDBo0CFu3bgUAbN26FePHj1e97vjx47Fjxw54PB5s2LABNpsNp512WsCxDBs2TPm6W7duAIDS0tJWf0Yialv2WA+AiMis6upqAMD8+fPRvXt31WMul0sVDIUrMTHR1HEOh0P52mKxAPDVLxFR+8KMEBG1GwUFBXC5XNi3bx/69++v+q9nz57KcStWrFC+PnbsGLZv347BgwcDAAYPHoxly5apXnfZsmUYOHAgbDYbhg4dCq/Xq6o5IqKOixkhImo3UlNTceedd+L222+H1+vFhAkTUFFRgWXLliEtLQ29e/cGADzyyCPIyspCbm4u/vjHPyI7OxsXXnghAOCOO+7A6NGj8eijj2LatGlYvnw5nn/+ebzwwgsAgD59+mD69Om49tpr8eyzz6KwsBB79+5FaWkpLrvsslh9dCKKEgZCRNSuPProo8jJycGcOXOwa9cuZGRkYMSIEbj33nuVqanHH38ct956K3bs2IHhw4fjk08+gdPpBACMGDEC77zzDh544AE8+uij6NatGx555BHMmDFDeY8XX3wR9957L37/+9+jrKwMvXr1wr333huLj0tEUcZVY0TUYcgruo4dO4aMjIxYD4eI2gHWCBEREVGnxUCIiIiIOi1OjREREVGnxYwQERERdVoMhIiIiKjTYiBEREREnRYDISIiIuq0GAgRERFRp8VAiIiIiDotBkJERETUaTEQIiIiok6LgRARERF1Wv8PrQdh01wygj4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMA0lEQVR4nO3dd3wUdf4/8NdsTw8hEHovgkKoIsUKir2cnthO0FN/elhR76venfVOvKJni+XOU84r9npiR4og0gRFOkiHEFp62ezu/P7YzOxnZmdmZ5NNdpO8no+HD5Otn51ddt55f96f90eSZVkGERERUTvkSPYAiIiIiJKFgRARERG1WwyEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG7xUCIiIiI2i0GQkRERNRuMRAiIiKidouBEBG1KTt27IAkSZgzZ07c912wYAEkScKCBQssbzdnzhxIkoQdO3Y0aoxElDoYCBEREVG7xUCIiIiI2i0GQkRERNRuMRAiooR68MEHIUkSNm/ejKuuugo5OTno1KkTfve730GWZezevRsXXHABsrOz0aVLFzz++ONRj1FSUoJf/vKXKCgogM/nQ2FhIf75z39G3a60tBQzZsxATk4OcnNzMX36dJSWlhqOa+PGjbjkkkuQl5cHn8+HMWPG4MMPP0zoa3/uuedw7LHHwuv1olu3bpg5c2bUeLZs2YKLL74YXbp0gc/nQ48ePXDZZZehrKxMvc0XX3yBSZMmITc3F5mZmRg8eDDuu+++hI6ViMJcyR4AEbVN06ZNw5AhQ/DYY49h7ty5+P3vf4+8vDy8+OKLOO200/DHP/4R//nPf3DXXXdh7NixOOmkkwAANTU1OOWUU7B161bcfPPN6Nu3L9566y3MmDEDpaWluO222wAAsizjggsuwOLFi3HjjTdiyJAheO+99zB9+vSosaxbtw4TJ05E9+7dcc899yAjIwNvvvkmLrzwQrzzzju46KKLmvx6H3zwQTz00EOYMmUKbrrpJmzatAnPP/88VqxYgSVLlsDtdsPv92Pq1Kmoq6vDLbfcgi5dumDv3r346KOPUFpaipycHKxbtw7nnnsuhg8fjocffhherxdbt27FkiVLmjxGIjIgExEl0AMPPCADkG+44Qb1skAgIPfo0UOWJEl+7LHH1MuPHj0qp6WlydOnT1cve/LJJ2UA8r///W/1Mr/fL48fP17OzMyUy8vLZVmW5ffff18GIP/pT3/SPM+JJ54oA5BfeeUV9fLJkyfLw4YNk2tra9XLQqGQPGHCBHngwIHqZfPnz5cByPPnz7d8ja+88ooMQN6+fbssy7JcUlIiezwe+YwzzpCDwaB6u2effVYGIL/88suyLMvy6tWrZQDyW2+9ZfrYf/3rX2UA8sGDBy3HQESJwakxImoW1113nfqz0+nEmDFjIMsyfvnLX6qX5+bmYvDgwfjpp5/Uyz7++GN06dIFl19+uXqZ2+3GrbfeisrKSixcuFC9ncvlwk033aR5nltuuUUzjiNHjuCrr77CpZdeioqKChw6dAiHDh3C4cOHMXXqVGzZsgV79+5t0mv98ssv4ff7cfvtt8PhiHytXn/99cjOzsbcuXMBADk5OQCAzz77DNXV1YaPlZubCwD44IMPEAqFmjQuIoqNgRARNYtevXppfs/JyYHP50N+fn7U5UePHlV/37lzJwYOHKgJKABgyJAh6vXK/7t27YrMzEzN7QYPHqz5fevWrZBlGb/73e/QqVMnzX8PPPAAgHBNUlMoY9I/t8fjQb9+/dTr+/bti1mzZuGll15Cfn4+pk6diqKiIk190LRp0zBx4kRcd911KCgowGWXXYY333yTQRFRM2GNEBE1C6fTaesyIFzv01yUAOKuu+7C1KlTDW8zYMCAZnt+vccffxwzZszABx98gM8//xy33norZs+ejW+//RY9evRAWloaFi1ahPnz52Pu3Ln49NNP8cYbb+C0007D559/bnoMiahxmBEiopTSu3dvbNmyJSoDsnHjRvV65f/79+9HZWWl5nabNm3S/N6vXz8A4em1KVOmGP6XlZXV5DEbPbff78f27dvV6xXDhg3Db3/7WyxatAhff/019u7dixdeeEG93uFwYPLkyXjiiSewfv16/OEPf8BXX32F+fPnN2mcRBSNgRARpZSzzz4bxcXFeOONN9TLAoEAnnnmGWRmZuLkk09WbxcIBPD888+rtwsGg3jmmWc0j9e5c2eccsopePHFF7F///6o5zt48GCTxzxlyhR4PB48/fTTmuzWP/7xD5SVleGcc84BAJSXlyMQCGjuO2zYMDgcDtTV1QEI1zTpjRgxAgDU2xBR4nBqjIhSyg033IAXX3wRM2bMwKpVq9CnTx+8/fbbWLJkCZ588kk1e3Peeedh4sSJuOeee7Bjxw4MHToU7777rqbeRlFUVIRJkyZh2LBhuP7669GvXz8cOHAAS5cuxZ49e/D99983acydOnXCvffei4ceeghnnnkmzj//fGzatAnPPfccxo4di6uuugoA8NVXX+Hmm2/Gz3/+cwwaNAiBQAD/+te/4HQ6cfHFFwMAHn74YSxatAjnnHMOevfujZKSEjz33HPo0aMHJk2a1KRxElE0BkJElFLS0tKwYMEC3HPPPfjnP/+J8vJyDB48GK+88gpmzJih3s7hcODDDz/E7bffjn//+9+QJAnnn38+Hn/8cYwcOVLzmEOHDsXKlSvx0EMPYc6cOTh8+DA6d+6MkSNH4v7770/IuB988EF06tQJzz77LO644w7k5eXhhhtuwKOPPgq32w0AKCwsxNSpU/G///0Pe/fuRXp6OgoLC/HJJ5/ghBNOAACcf/752LFjB15++WUcOnQI+fn5OPnkk/HQQw+pq86IKHEkuTmrFImIiIhSGGuEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG7xUCIiIiI2i0GQkRERNRusY+QhVAohH379iErKwuSJCV7OERERGSDLMuoqKhAt27dojZw1mMgZGHfvn3o2bNnsodBREREjbB792706NHD8jYMhCworfx3796N7OzsJI+GiIiI7CgvL0fPnj1tbajMQMiCMh2WnZ3NQIiIiKiVsVPWwmJpIiIiarcYCBEREVG7xUCIiIiI2i3WCCVAMBhEfX19sofRKrndbjidzmQPg4iI2ikGQk0gyzKKi4tRWlqa7KG0arm5uejSpQt7NRERUYtjINQEShDUuXNnpKen80QeJ1mWUV1djZKSEgBA165dkzwiIiJqbxgINVIwGFSDoI4dOyZ7OK1WWloaAKCkpASdO3fmNBkREbUoFks3klITlJ6enuSRtH7KMWSdFRERtTQGQk3E6bCm4zEkIqJkYSBERERE7RYDIWqSPn364Mknn0z2MIiIiBqFxdLt0CmnnIIRI0YkJIBZsWIFMjIymj4oIiKiJGAglASyLCMQkhEMyfC5U2+VlCzLCAaDcLlifzw6derUAiMiIiJqHpwaS4KgLGPD/nJsPlCBkCy36HPPmDEDCxcuxFNPPQVJkiBJEubMmQNJkvDJJ59g9OjR8Hq9WLx4MbZt24YLLrgABQUFyMzMxNixY/Hll19qHk8/NSZJEl566SVcdNFFSE9Px8CBA/Hhhx+26GskIiKyi4FQAsmyjGp/IOZ/dfVB1Db8V1lbb+s+sf6TbQZUTz31FMaPH4/rr78e+/fvx/79+9GzZ08AwD333IPHHnsMGzZswPDhw1FZWYmzzz4b8+bNw+rVq3HmmWfivPPOw65duyyf46GHHsKll16KH374AWeffTauvPJKHDlypMnHl4iIKNE4NZZANfVBDL3/s6Q89/qHpyLdE/vtzMnJgcfjQXp6Orp06QIA2LhxIwDg4Ycfxumnn67eNi8vD4WFhervjzzyCN577z18+OGHuPnmm02fY8aMGbj88ssBAI8++iiefvppLF++HGeeeWajXhsREVFzYUaIVGPGjNH8XllZibvuugtDhgxBbm4uMjMzsWHDhpgZoeHDh6s/Z2RkIDs7W91Gg4iIKJUwI5RAaW4n1j881dZttxyoRF0giD75Gcj0Nv1tSEtA0bV+9dddd92FL774An/5y18wYMAApKWl4ZJLLoHf77d8HLfbrfldkiSEQqEmj4+IiCjRGAglkCRJtqanACDD64IkAT6X0/Z9EsXj8SAYDMa83ZIlSzBjxgxcdNFFAMIZoh07djTz6IiIiFoOp8aSxNGwq0RLrxoDwiu9li1bhh07duDQoUOm2ZqBAwfi3XffxZo1a/D999/jiiuuYGaHiIjaFAZCBoqKijB06FCMHTu22Z7D2RAJBUMtHwjdddddcDqdGDp0KDp16mRa8/PEE0+gQ4cOmDBhAs477zxMnToVo0aNauHREhERNR9Jtrvuuh0qLy9HTk4OysrKkJ2drbmutrYW27dvR9++feHz+eJ+7N1HqnG02o8uOT50zor//m1JU48lERGRyOr8rceMUJIoGSHONBERESUPA6EkcUgNgRATckREREnDQChJnA1HPhk1QkRERBTGQChJmBEiIiJKPgZCTdTYWvNkrhpLNazXJyKiZGEg1EhK9+Tq6upG3V/JCAUZBKjHUN+RmoiIqLmxs3QjOZ1O5ObmqntopaenQ2oIbuwI1AcgB/wIyE7U1tY21zBTmizLqK6uRklJCXJzc+F0Nn2bECIiongwEGoCZff2xmwoWh8MoaS8LjxFVtm+e+fk5uaqx5KIiKglMRBqAkmS0LVrV3Tu3Bn19fVx3Xff0Rrc9MEyeF1OfHzbic00wtTndruZCSIioqRhIJQATqcz7pN5ZiawtyIISQrC6/XGNa1GREREicFi6SRJc4cDJ1kG/EG2lyYiIkoGBkJJ4nNHMki1fgZCREREycBAKEncTgdcDb2EagPBJI+GiIiofWIglERKVqjGz0CIiIgoGRgIJZESCDEjRERElBwMhJLI5w4ffmaEiIiIkoOBUBIpK8dq61ksTURElAwMhJJInRqrZ0aIiIgoGRgIJVEaAyEiIqKkYiCURF6lRoiBEBERUVIwEEoiJSPEQIiIiCg5GAglkY/F0kREREnFQCiJWCNERESUXAyEkkjpI8RAiIiIKDkYCCWRz8MtNoiIiJKJgVAS+VzcYoOIiCiZGAglUZqaEWKxNBERUTIwEEoin6uhRogZISIioqRgIJRESkaoljVCREREScFAKInUPkLMCBERESUFA6EkUgIhrhojIiJKDgZCScTO0kRERMnFQCiJuNcYERFRcjEQSqL0hmLpqrpAkkdCRETUPrX5QOijjz7C4MGDMXDgQLz00kvJHo5GptcFgIEQERFRsriSPYDmFAgEMGvWLMyfPx85OTkYPXo0LrroInTs2DHZQwMAZPoaAiF/EKGQDIdDSvKIiIiI2pc2nRFavnw5jj32WHTv3h2ZmZk466yz8Pnnnyd7WColIwQAVX5mhYiIiFpaSgdCixYtwnnnnYdu3bpBkiS8//77UbcpKipCnz594PP5MG7cOCxfvly9bt++fejevbv6e/fu3bF3796WGLotXpcDroYsUFUdC6aJiIhaWkoHQlVVVSgsLERRUZHh9W+88QZmzZqFBx54AN999x0KCwsxdepUlJSUtPBIG0eSJGQ0ZIUq6+qTPBoiIqL2J6UDobPOOgu///3vcdFFFxle/8QTT+D666/HNddcg6FDh+KFF15Aeno6Xn75ZQBAt27dNBmgvXv3olu3bqbPV1dXh/Lycs1/zS1TDYSYESIiImppKR0IWfH7/Vi1ahWmTJmiXuZwODBlyhQsXboUAHD88cfjxx9/xN69e1FZWYlPPvkEU6dONX3M2bNnIycnR/2vZ8+ezf461EColjVCRERELa3VBkKHDh1CMBhEQUGB5vKCggIUFxcDAFwuFx5//HGceuqpGDFiBO68807LFWP33nsvysrK1P92797drK8BADK84V5ClVxCT0RE1OLa9PJ5ADj//PNx/vnn27qt1+uF1+tt5hFpZfrcANhLiIiIKBlabUYoPz8fTqcTBw4c0Fx+4MABdOnSJUmjil8mM0JERERJ02oDIY/Hg9GjR2PevHnqZaFQCPPmzcP48eOTOLL4RIqlGQgRERG1tJSeGqusrMTWrVvV37dv3441a9YgLy8PvXr1wqxZszB9+nSMGTMGxx9/PJ588klUVVXhmmuuSeKo45PBQIiIiChpUjoQWrlyJU499VT191mzZgEApk+fjjlz5mDatGk4ePAg7r//fhQXF2PEiBH49NNPowqoU1kW9xsjIiJKmpQOhE455RTIsmx5m5tvvhk333xzQp+3qKgIRUVFCAabv7cPM0JERETJ02prhJrTzJkzsX79eqxYsaLZnyuDfYSIiIiShoFQkmX5mBEiIiJKFgZCSZadFu4jVF7LvcaIiIhaGgOhJMtL9wAAjlYxECIiImppDISSLC8jHAgdrqpL8kiIiIjaHwZCSdahIRCqrQ+hxs8d6ImIiFoSAyEDRUVFGDp0KMaOHdvsz5XhccLjDL8NR6r9zf58REREFMFAyEBLLp+XJAkdMsIF00erGAgRERG1JAZCKaBDQ8H0EQZCRERELYqBUApQCqaPcmqMiIioRTEQSgFKwTQzQkRERC2LgVAKiPQSYiBERETUkhgIpQA1I8SpMSIiohbFQCgFdGwIhErK2VSRiIioJTEQMtCSfYQAoF+nDADA1oOVLfJ8REREFMZAyEBL9hECgIGdswAAOw9Xoy7A7tJEREQthYFQCijI9iLL50IwJGP7oapkD4eIiKjdYCCUAiRJwsDOmQCAzQc4PUZERNRSGAiliEEF4emxLQcqkjwSIiKi9oOBUIro3ymcEfqJU2NEREQthoFQiuiTH145toOBEBERUYthIJQi+uanAwgHQrIsJ3k0RERE7QMDoRTRMy8dDgmo8gdxsIKNFYmIiFoCAyEDLd1QEQC8Lie6d0gDAC6hJyIiaiEMhAy0dENFRZ+ODXVChxkIERERtQQGQilE6TD9497yJI+EiIiofWAglELG9OkAAFix40iSR0JERNQ+MBBKIUogtOlABcpq6pM8GiIioraPgVAK6ZzlQ5+O6ZBl4LtdR5M9HCIiojaPgVCKGdI1GwCwkyvHiIiImh0DoRSTn+kFAByq9Cd5JERERG0fA6EUEwmE2FSRiIiouTEQSjH5WR4ADISIiIhaAgOhFNOpISN0kFNjREREzY6BkIFkbLGhyM9qmBrjfmNERETNjoGQgWRtsQFEMkKHKuu4Cz0REVEzYyCUYpRi6bpACJV1gSSPhoiIqG1jIJRi0jxOZHicALiEnoiIqLkxEEpBSp3QQdYJERERNSsGQimoT8cMAMCG/dyFnoiIqDkxEEpBY3qHN19duZP7jRERETUnBkIpaHTDLvQrth/hyjEiIqJmxEAoBY3omQuXQ0JxeS32ldUmezhERERtFgOhFJTucaF7hzQAwL7SmiSPhoiIqO1iIJSiOqSH9xw7UsUl9ERERM2FgVCK6pjBQIiIiKi5MRBKUXkMhIiIiJodA6EUxUCIiIio+TEQMpDM3ecVDISIiIiaHwMhA8ncfV7RQQiEVuw4gt1HqpM2FiIiorbKlewBkDGlWHrh5oNYuPkgjumShU9vPynJoyIiImpbmBFKUcrUmGJjcQUCwVCSRkNERNQ2MRBKUfpACAD2s8s0ERFRQjEQSlFGgdBedpkmIiJKKAZCKSrT68LQrtnomZeGET1zAQB7jjIQIiIiSiQGQilKkiT875ZJ+OKOkzG4IAsAsPtINb7echA1/mCSR0dERNQ2cNVYCnM6JDgdTvRo2ID1qXlbAABXndALv79wWDKHRkRE1CYwI9QKKDvRK/797a4kjYSIiKhtYSDUChzXPSfqMlmWkzASIiKitoWBUCswqKFGSHSwsi4JIyEiImpbGAi1ErecNkDz+5YDlUkaCRERUdvBQKiVuG3yQMz+2TAc1z0bALCpuCLJIyIiImr9GAi1Ei6nA5cf3wtnDO0CAFi182iSR0RERNT6MRBqZSb07wgA+GbbIYRCLJgmIiJqCgZCrUxhz1xkeJw4Wl2P9fvLkz0cIiKiVo2BkIGioiIMHToUY8eOTfZQoridDozrF8kKERERUeMxEDIwc+ZMrF+/HitWrEj2UAwp02NLth5O8kiIiIhaNwZCrdDEAfkAgOXbj8AfCCV5NERERK0XA6FWaHBBFvIzPaipD2LN7tJkD4eIiKjVYiDUCjkcEo7tFt52Y/shNlYkIiJqLAZCrVS3XB8AYH9ZbZJHQkRE1HoxEGqlumSHd6QvZiBERETUaAyEWqmuDRmhfQyEiIiIGo2BUCvVNSccCBWX1SR5JERERK0XA6FWSgmE9peGM0I7D1fhcGVdModERETU6jAQaqW65IRrhCrqAvhm6yFMeWIhpv3tW8gy9x8jIiKyi4FQK5XpdSHL5wIAXPHSMtQHZWwtqUTfez/GnCXbkzw6IiKi1oGBUCs2pGu24eUP/m99C4+EiIiodWIg1IpdPb53sodARETUqjEQasXOPLYLBhVkomOGB/+89nj18v6dMpI4KiIiotbDlewBUOO5nA58MHMSAqEQsnxu/PHiYfi/d9aitp4bsRIREdnBQKiVS/M4ATgBACN7dQAAVPsDSRwRERFR68GpsTYkzR0OiKr9wSSPhIiIqHVgINSGpHvCgVBdIIRQSIYsy6iorU/yqIiIiFIXA6E2JN0TmemsqQ/i93M3YMTDX+DHvWVJHBUREVHqYiDUhnhdkbez2h/Ed7uOIhiSsXz7kSSOioiIKHWxWLoNcTgkpLmdqKkPYuwfvlQv33OUG7MSEREZYUaojVHqhES7j1YnYSRERESpj4FQG+NzGwRCRxgIERERGWEg1MYYZYT2Hq3hrvREREQGGAgZKCoqwtChQzF27NhkDyVuRoFQRV0AZTVcRk9ERKTHQMjAzJkzsX79eqxYsSLZQ4mb0dQYwIJpIiIiIwyE2hijjBAQqRPaWlLJ7BAREVEDBkJtTMikFGj30WpsLC7HlCcW4uLnv2nZQREREaUoBkJtTG298T5je47W4O2VewCEs0JERETEhoptjlkgtPtINbyuyLTZCwu3YUjXbCzddhjXndgX+ZnelhoiERFRymAg1MbU1ocML99ztAYeYQuOxz7ZqP68YX85/nnt8c0+NiIiolTDQKiNqQ2YZISOVsPtMJ4JXbb9cHMOiYiIKGWxRqiNOa57jub3nnlpkKRwpqiiLpCkUREREaUmBkJtzMPnH4trJ/bF9Sf2RYd0N56cNhIje+Za3keCZHj5kSo/O1ITEVGbJsk805kqLy9HTk4OysrKkJ2dnezhxE2WZUiShGp/AB+u2Qef24ln52+NWjWW5nZiwyNnai77ZtshXPH3Zbh6fG88fMFxLTlsIiKiJonn/M2MUBsmSeFMT7rHhcuO74ULR3ZHli+6LKymPogHP1yHOqG+6I8NxdSvLt3ZMoMlIiJKgkYFQv/85z8xd+5c9fdf//rXyM3NxYQJE7BzJ0+cqSzTa1wfP+ebHXhlyQ71d9YTERFRe9CoQOjRRx9FWloaAGDp0qUoKirCn/70J+Tn5+OOO+5I6AApsbJ9btPr1u8rV3+uqGUgREREbV+jls/v3r0bAwYMAAC8//77uPjii3HDDTdg4sSJOOWUUxI5Pkowo6kxxaHKOpRV1+OZr7bgYEVdC46KiIgoORqVEcrMzMThw+HeM59//jlOP/10AIDP50NNDXc5T2Vup/lb/s22wyh8+HO8tHh7C46IiIgoeRqVETr99NNx3XXXYeTIkdi8eTPOPvtsAMC6devQp0+fRI6PEizIRYJERESqRmWEioqKMH78eBw8eBDvvPMOOnbsCABYtWoVLr/88oQOkBIrZLY9vc37/PObHZj9yQYEgiHM/mQDvtp4IJHDIyIialGNygjl5ubi2Wefjbr8oYceavKAqHkFGxEI1QaCSPe4UFrtxwMfrgMQDo7+/vV2vLjwJ+x47JxED5OIiKhFNCoj9Omnn2Lx4sXq70VFRRgxYgSuuOIKHD16NGGDo8QbWJAZ932q/eH+Qou3HlIv+2Yb9ycjIqLWr1GB0N13343y8vBS67Vr1+LOO+/E2Wefje3bt2PWrFkJHSAl1vQJfXDTKf3juk9NQyC0aPNB9bJdR6rVnwNB4x3viYiIUl2jAqHt27dj6NChAIB33nkH5557Lh599FEUFRXhk08+SegAKbG8Lif+78xjDK/zCCvKNj5yJjpmeAAAVf5wT6GVOyPZPrHPUGlNfXMMlYiIqNk1qkbI4/GgujqcEfjyyy9x9dVXAwDy8vLUTBG1Lj3z0rDo7lPxj8Xbkel1wed2Is3jBKoiU2Ol1cYBz9EqP/IzvVGXL9hUguw0N0b16qBeVlsfhM/tbJ4XQUREFKdGBUKTJk3CrFmzMHHiRCxfvhxvvPEGAGDz5s3o0aNHQgdILcMpSZAkCded2E+9LN0TDlhq/EHIsoyKWpNAyCBA2ldagxmvrAAAtZj6v8t24b731uKFq0bhzOO6JvolEBERxa1RU2PPPvssXC4X3n77bTz//PPo3r07AOCTTz7BmWeeGePelIqcDinqsjRPOE5es7sUtfUh1AeNV5wdqfJHXbZbqCHyB8I1RPe9txYAcOO/v2vyeImIiBKhURmhXr164aOPPoq6/K9//WuTB0TJYRQIpTdMYf35s0349qfwKjGHFN7NvlLYlPVotTYQqvEHUVxeq/5e7Q/A4/I0x7CJiIiapFGBEAAEg0G8//772LBhAwDg2GOPxfnnnw+nk/UfrZFDMgiEPJH38ust4aXzmV4XsnzuqEBoxY4jeHHhT7jj9IG48d+rsPtIZKuVKn8QuenWzy/LMtbuLUP/TpnI8Db6Y0lERBSXRp1xtm7dirPPPht79+7F4MGDAQCzZ89Gz549MXfuXPTvH9/ybEo+46mx6KA2y+eO2rj1aJUf//h6O77ccABfbojuNF1dZ76T/Xur9yDN7UQgJOPm/67G8B45+PDmSY14BURERPFrVCB06623on///vj222+Rl5cHADh8+DCuuuoq3HrrrZg7d25CB0nNz2UQCHkMNmjNTnMjS5exOVJVjzKLJfRVDavO9I5W+XHHG98DAMb3C2/T8sOeMttjJiIiaqpGFUsvXLgQf/rTn9QgCAA6duyIxx57DAsXLkzY4Kj53H/uUM3vRsvfDxkUQWf5XFEZoSNVdTCYWVOZZYTE/kMHKmoNb0NERNScGhUIeb1eVFRURF1eWVkJj4dFsa3BtZP6Ysk9p6HoilEY1SsXD11wbNRtistqoi7L9rmRnebWXLZ2b5mmwaKeWUZIXI6/vzR2ILT7SDVOeHQeiuZvjXlbIiIiOxoVCJ177rm44YYbsGzZMsiyDFmW8e233+LGG2/E+eefn+gxUjPpnpuGc4Z3xbu/mogeHaKrmfvmZ0Rdlm2QETpU6cfaveZTWlUmGSExeKqpNw6WRI98tB7F5bX482ebYt6WiIjIjkYFQk8//TT69++P8ePHw+fzwefzYcKECRgwYACefPLJBA+RkuXB84/FZWN74vkrR6mXZflcyPZFMkK9O8ZYDgbg9jfW4InPN8HtjMyfBYIhlJvUFdWb7F2243CV3aETERHZ0qhi6dzcXHzwwQfYunWrunx+yJAhGDBgQEIHR8nVNScNj108XLNU3ulwaDJCJw3shH8d3hnzsZ7+aivSPU7UB8OZn8q6gOl0WkVtAHkZ0VOsZtNnz8zbgtW7S/HiL0bDbVDgTUREZMZ2IBRrV/n58+erPz/xxBONHxGlnAxhGb0/GESWkBHq3iHN9uMEhM7UFbUBlJts2VFeU28YCFWYTLH97eufUFEbwKbiChzXPSfq+mBINmwP0N6s2nkES7cdxk2nDODxICJqYDsQWr16ta3bSVbLh6hVEt/T2voQMryRwKhrjs/24/iFKa/y2nqUm2SExADp1aU78NPBKsw6Y5Dhbav9kcxStUFR9suLt+OJLzbjP9eNQ2HPXNtjbYsufn4pAKBDhgdXjuud5NEQEaUG24GQmPFpbS666CIsWLAAkydPxttvv53s4bRqAztnavoLdcu1nxESVdQGTGuE/vjpRjx12UjkZ3px/wfrAAB9dLVI/kAIHpcDJeV16mVV/ujA6uGP1gMI73M299YTGzXWtmb9vvJkD4GIKGW0i4KK2267Da+++mqyh9GqvferCbjltAGYPqGPZlqlIMt+RkhUXlNvOjW2ZOth/Oa9tagVVpLtPqpdyl/TkP0pqaiLusyIUcPI9qouYFyMTkTUHrWLQOiUU05BVlZWsofRqo3s1QF3njEYPrcTnbMjwU9Outvw9mP7dMAfLjrO9PHKa82LpQHgs3UH8O53e9Xf9Z2r95aGA6OSCnFz1yAq6wI4YtAIMlYRtV8XHKzbV4Zdh6st79NaMRAiIopIeiC0aNEinHfeeejWrRskScL7778fdZuioiL06dMHPp8P48aNw/Lly1t+oKQa0TMXd54+CE9dNiJquw2Fz+1Ehsd85nX7oUrTqTHFfe+tVX/eV6rNCJ399Nf45zc7cECYGttXWoNxf/gSox75An/+bKPm9laB0D+/2YEh93+KJVvDG8uWVNTinKcX46Q/t97pYCv+QOyeTURE7UXSA6GqqioUFhaiqKjI8Po33ngDs2bNwgMPPIDvvvsOhYWFmDp1KkpKStTbjBgxAscdd1zUf/v27Wupl9Hu3DJ5IC4Y0R0Okyknr8sJj8v84/X9butu1Hp7jkZ3uX7gw3WajNC6fWVqF+v5Gw9qbusSehgdKK/VtAR44MN1CIZk3P7GGgDATwcj/YpkObLSra1gRoiIKKJRfYQS6ayzzsJZZ51lev0TTzyB66+/Htdccw0A4IUXXsDcuXPx8ssv45577gEArFmzJiFjqaurQ11dJMNQXs6i0sbyuR2aGh+9H/aUapbhx7LfYLsPAJpiaXFKLBDSnuyVAu9DlXUY9+g8ZHicWPfwmZrbBBpWtYVCkeAnEJI1jSAVtfVB1AVCyEmz/xr0DpTXYtvBSkzon9/ox2iMunoGQkREiqRnhKz4/X6sWrUKU6ZMUS9zOByYMmUKli5dmvDnmz17NnJyctT/evbsmfDnaC98bic6pEf3AurXKQNelwPltQG1zseO+qBxZkbMCB0WAyHd7ZWM0JpdpQCM9z9TniMoZIHMsifnPbMYk/74FTYWNz5YHvfoPFzx92VYvOVQox+jMeo4NaYKhmTM/mQDPl9XnOyhEFGSpHQgdOjQIQSDQRQUFGguLygoQHGx/S+uKVOm4Oc//zk+/vhj9OjRwzSIuvfee1FWVqb+t3v37iaNvz3zuR04eVAn3HRKf83lmV4XRvXqoP7ucTo0e5r9bGT3uJ7ngElGqD4U0kxruRoyQm5huk4fEChbewSFjFBxWS1+895arNldql5WWx/ElpJKVNQGcO0rK+Iar5El21o6EGJGSPHx2v14ceFPuOFfq5I9FCJKkqRPjbWEL7/80tbtvF4vvF5vM4+mffC5nHA4JPzfmcdg7Z4yLG4oRPa5nPjrtBF4a+VuVPmDOK+wKx7633psPxSuy7n+pH54d/Ve08fNz/TiUGUk+BFXdpVWR4qvdx+pwYVFS9Tf95XWYMGmEk3RdEVtAN7MSHPIQEMAJAYKv31/Lb796Qj+s2wXdjx2jno/9XHLalEfDLWqrT0YCEUcFNovEFH7lNKBUH5+PpxOJw4cOKC5/MCBA+jSpUuSRkV2eN2RwEDsRO11O9Alx4dbJg9UL0sXtvDwWhRYA0CXHG0g5DfZoBUAvt9Tpv68elcpZryyAjNPjWSoKmoDyM+MBL5KJkjsR/SD8BiR+2lXu9XWB5sUCLV0hyNOjUUY1X8RUfuS0n/GejwejB49GvPmzVMvC4VCmDdvHsaPH5/EkZHo7qmDAQD/76R+htdnCEvs09zOqOs1gZDB9drbNi12X7g5spqs0mTVWo1Q5K2vNQIQtdpNzLAUl9XiteW7LAvF9ezsSlMXCGpWujUFi6UjXK0ok0dEzSPpGaHKykps3bpV/X379u1Ys2YN8vLy0KtXL8yaNQvTp0/HmDFjcPzxx+PJJ59EVVWVuoqMku9Xp/THOcO6okeHNLy46Keo68V+Qj6DQEe8zCoj5HE64GziXnZHqyLZHH1mBwDmbyzBCwu3qb8bZZz0gZAY9FwzZwU27C/HzsPV+L8zB6v7tIVCMr7eegjHdsvWZKHsmvTH+ThYUYd1D03VBJaNwamxCG4+S0RJ/3No5cqVGDlyJEaOHAkgvMv9yJEjcf/99wMApk2bhr/85S+4//77MWLECKxZswaffvppVAF1IhUVFWHo0KEYO3Zssz1HWyJJEvrkZ2j+uhbb74gnbp87+iMnbn/hczvx8owxGN27Q9Tt8jI8mmxNYxytjhRUG236es2cFdgZo6N09NRYJLDYsD+8iuyFhdsw6Y/zUdrwfB//uB/TX16OM5/8OurxJBuTY0otS1NWqSk4NRYhTo0FLKZZiajtSnogdMopp0CW5aj/5syZo97m5ptvxs6dO1FXV4dly5Zh3LhxzTqmmTNnYv369VixoukrggjIFGqEenRIj7pe/Kvc63LgtGMK8M5NE/Cbs4dobpeX4TGccirItp9hEXeoN8oI2WGWERJXmwHhbUC+WB+ub1uwKTwlJ9Y32aXpa2TSRiAW2UZLgPbI5Yh8BVrVmxFR25X0QIjaJvF0LQYOl42N7s3kEKa7xOzQ9Sf1w19+Xqj+3jHTg4cvOA5up4QzhkYygr3zIsvv4xFPZ2sgEkzoN4utC4TwzdZDOPaBT6Puo/QvyrVovBhrdqZeaA4ZbGSnazFGa4PNshtN/LyxdoqofWIgRM3uzOPCK/yum9RXs2GrQswISboaILGQOi/Dg+P75mHtg1Px3JWj1MsbO11WURuIawsNJZMSVSxdH8SD/1unmSJTKEv6c4XNaSvrdM8bo+5JzALps05GZFnGGyt24Xuh95G+03bIxuO0N8wIEbVPSS+Wprapd15kCmxkrw748aGpyPAYrwhzWAQC4iqzvIxwp2qluLp/pwxsO1iFC0Z0w9q90cvcY6msq4/r5FdVF4DP7YyeGgsEDbtoA5Emj05hCqakvBa98qKnCM2IgVDARgCzYPNB/N874Q1rdzx2DnYfqca/l+3U3KbKH4hri5NUJMtyVOAcL00XcWaEiNolZoQoof573TjcfOoAXDK6h+byTK/L9KRlFQiJK8o6ZmiDjbdvnIBXrhmLSw2m2+yoqA3EVS9TVRdsuF90sXRPk8BGCYTEAuXi8lpNQGN1Kl+96yie+GKT+rsYFNX4g5i/qSSqbkop2FZc9Nw3eHGhdjXfCY/OUztp6/1t0TZc/fLyuFoAtLT9ZTUY9+g8PPH5ptg3tiBm2FhETtQ+MRCihJowIB93TR0cV38Wq5tqp8a0RdEdMjw4dXBnzfL8eFTUBuLKAlTWBbDsp8N4a9UezeV1gSAydUvaR/XKBRBZpSYGXCXldaZBiN5Fz32Dfy6NZHP8wuPc995aXPPKCjyuCwb0015GBdpV/iAOV/qjLgeARz/eiEWbD+Ktlam7xcyzX21FSUUdnv5qa+wbWwixiJyo2W0sLsdZT32NL9cfiH3jJGAgZIDL51tW99w00+vSPNFTY3pOh4QO6fFP85TX1seVBaj2BzDtb99GXV5bH9KcRB0ScM3EvgCgBhtiwFVcXqvJ7MQzuyNmad5r2Irk5SU7NLcR4yCrWqBYr70khbefsBtIxiI+DAMhoubxq39/hw37y3HdqyuTPRRDDIQMcPl8y7piXG9cMa4XXvzF6KjrxBqhjpnGgRAAdMkxD6bMxDs1ps+sKDVPtfVBzYl5bJ88NWhTMkK1QtBxoLxWsxLMLFYRt/pQ1BoEL110BejidI/R7RWxXnu8q+paUqJqvUNNmBrbWlKBf3+7k/2HiGIorWlcq5KWwkCIks7jcuDRi4Zh6rHR+8fZyQgBQNec6NVosZRW++OaGlu186jmd6XYuLY+pJmyevzSQrV4Wq0REp7nUKVftxLMeAz7ymqiLlMeR8wM6V+7uEJMqWtSuJ0SujXcPlYNkL5NQCz7Smtw9cvLsWBTieXtistqba1+sxJKUA+AYBOmxqY8sQi/ff9HvLYidacQqX3ZW1qDK/7+Lb7amJgpqFU7j+DMJxdh6bbDTXqceFbnJgMDIUppYo1QfoZ548QuJoHQFeN6md5nX2mtZcZEb/mOSCCU6XVhVO9cAOFMghIIPXLBsejRIV3NXh2trserS3fgkx/3q/etD4S0K8FMmiTuPRodCCnj/elglXqZftsSMfip9muzOk6HpO7nZnTiFzNbZnuxmfm/d37Aos0HMeMV80zq/E0lOGH2PNzy2ndxPXaUBH2vigGZv5FTY2KbAqJk+s17a/HNtsO4dk5ipqCufGkZNhZX4PK/R5cExCO1wyAGQpTi0j0u3HXGIMw6fRByLOqAuhr0JwKAvh3Nmy36gyHsPmK9nYZIOeHNmNAHS+45DV0bpuNq60PqMnxPw15pSt+gYEjG/R+s03S0DoRCmqkxsyXx+0rNM0JbD1aql+k3YxUzOfqMkFOS1P3cjLJhYpYo3k1edxyuinmb5xeE93H7eG0xQiEZew1eox1iRqgpU1OJKJZO9nZlxWW1mPnf77Byx5HkDoSSTslAJ4pRb7TGSPGEEAMhSn03nzYQt04eaHmbAiEQEuuK0kx6Fym2lVRaXm9kWPcc5KS51YCitj6SEVICIa/LqclmifxBWZcRMpkaMwgSlIzQ+n2RJfJVuoBFrO2xygjV1gex41AVzvjrQrzdsBJO/OKLd2qsxh/7S1NMkT/+xSZMfOwrzN9oPZVmRIwdq5uwzF+zfL6Rj2PV/qElfPLjfsz9YT/+/e3O2DemVqGxwX2yP4tmODVG1ALEzs1ZvshS9gyvcTCiBEtKZqV3R/sNDpVpL586xSQEQs7I8ymBkl4gGNJMQRllhMqq6/HOd3ujLq+rD6EuEMSqnZG//qt1RdXilFaV7jqnQ8gIBUK4663vsflAJe5663sA2ozQoYr4/rq003dI/D7c2hCENqYZpnj8jIrK7dJMjTXy5CP2x9pXWtPi/ZeU95+dsduG2R9vwLAHP8eOQ7EzrHrOZKcnTaR2GMRAiNqIDkIhtRgIpbmNewwN6JwJIHIy1q+8spKfGa5V8rkjU0x1uqkxAHCbNEgKBGVN8GNUOFy0YKvhtNHOw1UY9uDnWCHUK+mnsCrqIpmc6jp9RsghBEJB/LBHG4SIK6cOV9XF/Etu7g/78cGacMBWo1navycqGwVovxCV4LExG9GKAV5TAqFQAjpLK2/zpuIKTHjsK5z55KJGj6cxlCm9xm7ISxEl5bWY+NhXeHrelqSN4cVFP6GmPoinv4p/DCkaB6V8JMRAiNqEET1zcUyXLJw4MB8eVyQrYzY9NVAXCHndTvz+wuNw2jGd8eWsk3Djyf1Nn0u/1UdtIHpqTP+zyB8MaVLf9QYnsAPltYb3XbnzaFRRb5Vu77IKy4yQmMkKRWURxKmx+qB1Dc+eo9WY+d/vcNvra1BeW68J6O5443s89OH6qPuIgYfyus0aO1oRpwP1GbF4JKKPkDId8emPxQCAHYeN6878gRAuLFqCW15b3ajnMaMEr01diUfAU/O2YG9pDZ74YnOyh9IozAg1DgMhA2yo2Pq4nQ58ctuJePXa4+FxRr4MzAKhwV2yAERqTbwuB646oTdenjEWAzpnYVBBpulzqYFQQ8B1qNKvnow8QhbIY5YRCoU0wY/R8vnyhr4bWbqO1WKQM2VIQcPjyZqTeKVFjZBLyAjtL6sVLg8fM/20zsz/rjbNCn28NrISrqw6up7o3dV7oi4Tz9VKQHewMRkhIRCqqW98vyMxMGvsqjElEHI5rU9CK3YcwZrdpfjf9/sSuumtkskKpngdRmuQUk01G/F2pmwglOKfTQZCBthQsXWSJAmSJGm29xCLpcWgYkL/fM199fU8ZtmcDI9Tzah4G6bGlm8/oi5nt5MRCgRlTY1LvcFJUQl48kyaSHbPTcNfpxWqv4uBgSYjpFs15nCEC7kB7bJvGeEvKyUjpEz7fb+7FEcNghwA+OgHIRAyaJhmlKEQvxCV6cTGTY3ZzwhtLanEJc9/g0WbD0Zd15SGigqlRCjWSUhprgkktlllW8sI1QWChoF1S2jtxzDRxdKJerhUP6wMhKjNcQknJHEfMjGo6N85Q7O1h9elzRyJv4u3y0lzm94nfJnNqTEhCxQ0mBpTVmyZNZEc3bsDsnxuNeOlBDyfryvWTHcZZYSUIEfcQiMYklFZF1AzQoMLspDfcLyKy6Kn6YIhWbO5q9GJ3ejLT/zDsL7hr+/GTY1Z1wgdqqzD0YalxDP/8x1W7jyKq19eHnW7xjZUFKc21YxQjECopDxyvI0Cx8ZSMkKttUZo28FKzHpjjTpNPfnxhSh8+POELwW3o7UHQonOCCUqsJJTfHKMgRC1OWKRsjg11r9TJkb2ysUJ/fKQ5nZiXL889Tolu6P+LgQxJw3qpP4sfk/63NH/fOwWS4tTY4GQjEOVdZovfiWw6GgSCGU0ZLeU/1fWBXCwog43/GuV5nb6QmqHFAngynUn4/LagLo83+t2qi0Jisuj64QOVdZpXoPdpfaaqaiGYKKspj7uaSnt1Fgw6roxv/8SJ/15PkIhGSUVxvVWgDYjJI6hLhA0bF8QuV67txxg/n4r9ggNMhMaCAVa99TYL15ahndX78Uv/rEMQOQ4rUhCX6RUCoQaMxJngjNCKTrTlnAMhKhN8wo9hZwOCe/eNAGvXX8CJEnCGUMjW3rU6rIK4pfQxaO6qz+LU1r6js6AzRqhoLaz9OGqOpzx10UY9+iXeGFhuOGgOjVmFgg1BHjKrvdV/gC+3BDdVl9/wnU5HGrQp78uvPRbmRpzqivpisuip670RdRHbf71Lp5nxGMZz1//gaB2k1v91NiPDcvxK2oDqKkPWp5QtBmhyOP87LlvMOGxr/DDnlLD+/kD0RmhWH+N7y2NFFFbBUI1/iAmP74Ad775veXjKRI5NZaoQMAfCOGtlbstg0nFvoaM4/6yWk1gmoyeOKkUCDWGI8GRi5SojFCKH1YGQtSmicGIQ4rUEQHA1GMLcNnYngCAMX3yNPfrlx/pSD26dwf1Z3Hayegrwt6qMVkzNbZ6VymOVPlRH5Txt0U/qdNUAJBnsq1IJCMUDogq6wL4bF141dJpx3RWtxYp1dVaOBySWuStzxb9/IWleGpeeLWMz+VAQY6SEYrOqOwv1V62z2D6zIhsUpwcT52QfiWcPhDaKXQLD6+oM38ss1Vj6xoaVr5r0MsJ0H4OlIcXp8b0J9RqfwDf7460KrAKhNbsLsW2g1V457s9trp7q8vnm3gS33KgAoUPfY5nErB0/G+LtuHut3/AGX+Nr5WAmN2LkWBrFk09ho1V4w/igzV7UVrdtOnAVM0IpXogZNxkhagVE+ej3cJKHkkXukiShMcuHo5bJw+M2ri0Z146PrplEjpnezV/FYlZjNz06GyNrakx3aox0ZEqPw4KtTvmU2PhYEapgaqqC6ibwt55xiCs3VOG/0JboAuET9b6aUDR7iPhv+B9bqe6bckBgyBH/5e+0b5osYjHMp6VY/pO2o98tB6989IxZWh4Fd2WAxXqdZV1AcsNWo36CIlZCbP7ikGc8jrEIn1/IKQp1L/i78s0AaVVICSuPvthdykmDMg3va3ZuBvj4Y/Wo7IugMe/2IxbYnRyj2XR5kMA4t+mpSmtEBIhUZv5xuuRuevx32W7MLJXrubyP3+2ES6HA3ecPsjW47BGqHGYEaI2R/wuE78YHCaf9m65aYYp4OO656BzVjgYuP/coQCApy4bqV4/uEsWnri0UHMfMRAy7ywtW7bQ31gczkb43A7TLUKUjJA6NVYXUE8iHTO8SG+43CgjZDYukc8dyQjtN8gI7SvTBj52pkAA8729th+s0hRlV9TWmy65NWrU+Kv/RDZx3XSgUrhtMEZGSFuz9M6qPRj+0OfqZbuPVGO7QYdfcezKNKcYdOtrntboNma1CoTEFgarbWzoqtR1NTWbkchpocaeP8X3trENLpsiWRmhD1aHM4+rd5WqlxWX1aJo/jY8NW+L7W7liZ4aEwOhpnw+Uj0jxECI2hzxH50Y4DRlvvvaSX3xw4NnYOqxXTSX/2xUD83vmhohi1VjRkvmlVVam4rDGY0sn9u0zkjJBCmr2IrL6tQvqjS3E76G59YXRLsckmFtk55YI2SVESrIDk/d2d081axG6OGP1uOE2fNwtMqPH/aUYtiDn+PXb/9g+Bj6lgCANgjRZ4SsepgEdcvnl2w9pMlizN90EKf+ZQHeX71X87hioKNMc4qfL3HqTAx6h3XPARArEIrc/rudR01vp45b6SNk0I8qHvGc6A5X1qFo/lbDFYVA4zMJYkaotpHtDJqiqccwHvXBkHrMjQIYcQGC3QAtRiuruInDamyfLYANFVslNlRs3czSsE39jsj2uQ0vF7NOYuDiNvlWCug6SyuUJo8b1UDIBbfL+DGUjNDAgvB9vtsVOWH6PA41CKvQb7Eh2c0IRVaNbTpQgRteXYmi+VvVwlylGePgLtkAgF1HjLsp64kZIaOdrTcUl+PZr7YCAN5aFd2QETDeU+uYruFxhEKyZgqqqi5g2cNEPzVmdvK9/Y01OF2od/EbdAaXDVbEAdqappMGhae5LIulhb/+lc+ClXiLpZduO4xbXlutmYIF4psWuunf3+HPn23Cra8bd8k2y77GogmEkpARinUMH/jgRzz2ycYmP48/EMKJf5yPC4oWAzCe0hKzQHY3YRUDqkQ07RSD+6bsoceGiq0QGyq2Tc21CsWlmX4TgiKTgCMkR/915XRI6N0xXKCt9OfJ9rnhMjmjKKvGju0WDgCU+iBJCgdjyhJ5o+cx6n+k53M5kCns2fb5+gP482eb8MTn4WJqZVVbr7w0w/ubifV9GArFPhkZTZl0zgpnpip0xdGVdQHL+gTxuQIh2fa+ZZqMUMNJyqxLtVLT5HZK6j51+kydSDzh7CuridnoUV0+b/PEd/nfv8X/vt+HRz/eoLk8nozQ8oal7cu3Gy9x19fj2SVOjVXWBjDzv9/hX0t34GiVHy8s3Ga69UyiWB2D/WU1+OfSnXhh4bZGN99UbCquQHF5LX7cW45QSDYschY/i2Y1hXrid1F9ArJbZlPZ8UrtMIiBELUjzbUa12z6StyJXk/f+ybN7VQbN246IGSEzKbGGjJCSiCkTOekuZ2QJMk0CHMa1AhNGdIZ+ZkeTB/fW73M63YizWAKbdvBcP1NXcP4O2VGisyP655t+JyiWH8ZHq32G04bivzB6JOQcqLQBxjV/qDtjFAgFLKdhdAUSzc8gXjeMQqE0j0udSrTLCN077s/aKYEZTlSwG6msavG9AXujenHmJtunCVtfI1Q5L19bcUuzP1hP373wTr8+p0f8NgnG3H1P6KbYoZCMuYs2a62TWgKq2NYH4jeJ6+xxCDFHwwZTo2JTUoDNoMaMbOUiAab4ue4aRmhyM/JaJQZCwMhanPMzrXNlhEymQIzm9YCogMhnxAIKePP9rnhMZ0aCwcpHTO9mhVvSvBiNv3lNKgROnFgJ6z4zRRcd2I/zXiMAiHlS6y24QuyU1Zkef/kYwoMn1MU61xdWu2PWaehfDkP7ZqNfp3CWTSl3kjf2LGqLmD556gmIxSUo94XPSWQE4MxpTO4dkPZ6KmxTK95IFRSUYslWw/hteW7o55zh0Gxtkg5QcU7FaJfPdiY+hiljkyvMf/WHJI2I7RbmG6d19Aja9OB6KnC91bvxYP/W49zn1kc93Pq2c2K1ek+J6t2HsGjH2+wnVEUg5S6QMgwIyROa9sNasTjHgjKWLzlEB7+3/pGZ7DEz3Gi9mEb9cgXmCtsz5MKGAhRm2P2ldFcGSGzrI1Xd/mT00aoP+u/MNM8DvTooJ1myk6LnRECoAYDQKTJo2VGSHcC9LkdkCQJnbMjQU1tfdCwc7ay75hy8hUbPooduM3EOtEcra6P+de28oWcm+7GbQ3LvNVAqEZbExVr+bxYelEfDMX8q1cZm1GxtPg0dQYZoQyvUw2EymvrUVFbj9eW78KRKj9O/ON8XPnSMsPn3HHYOhBqbEZIHxDbLEPRBCv6thOKxixecjokTUZI/By4LJoKrU1AJkhh9fkM6LI4ooufX4q/LfoJz86314NJ/Pz4A6GYy97rbb454necPxjCVf9YhpeXbMe/lu60dX9RIBjS/OHSlIyQnn5aNtkYCFG70SnTuDlhU5kFK2Iwcu9Zx+CCEd3U36MCIbcTvTqmay7rmZduWiOULuyhluWNTE8owYtVRkh/nbqJrFA7VF5bD0mSorJCSkZIOfn2FRpPFvbIiRlsxkrxH632x64Ranhur8uhTksqfzHrM0LhqTF7fYQCITnmX73KX9Z1mj5C4ccImtQIVaqBkEs91rX1Qby+fDfufXct/rboJ8vntQqEAsLKIzvZDDEzoA+E7GaUxK1C0r3Gregas0LTIUmoNlgRCABui0AhkTvGWx1DMTAzW0G1yUZxO6ANJv3BkI1/N/beG/Fm4r+13TYXM4j0f5Ak8jgrvt9ditXCQo9kYUNFant03xlFV4zC+2v2YuZpA5rl6cxWh7k1K8jCWReP0wF/MGRYI9Qp04t0j1P9q7hffqb51JjQX0jMDil9h0wzQlL01JhR8bTyRZ/ucWrGWlZTj9r6oHrC6JLtw0e3TEKWzwWX0wG30xFVSKxvNKh9bofmC7a0uj7mChnlMTwuh/rYfjUjpA2EwsXS5vRTY7Gmh2rrQ8jyGWeEjPZRAyIZoUyvSw1C6wIhtZu2WQFwXoYHR6r8msBDTzx2ZnuNHa6sU4MwsT5Dv0mseP9QSDbtSbPnaOSkarRhMJCYjJDI7XIAJtfZzZbYYVkjFNRmcYzYTcqJrzORGSGxBk+saWpMYKrPeiUyIxSSZdTWB3FB0RIAwPqHp2r+uGtpzAhRm6NfJXTO8K74+9VjTJe/N5VZ2t5ouw2lnih6aixc5NwrL5IVGtA5QxNMiV2mxefMElZ3KdtnmBVwO51GGaHI73eePghdc3xqvZBRzyHxxO11O3Bc9xx1xZv+5FqrO2HoTyDpuoaRR6v9hlNjIWHbkTo1EHKqQWikRkg7NRZziw19sXSMWgrlZGC0fF7TI8loaszj0qzmUwLMCpMNa5UMpj5Lcueb3+OCoiWo9ge0gZDBcdt5uApj//Alrp0TXgErBkL6z6BmA1qLE+9eYXsVswyf3ROv+JxOSTJslgnANDMKJDYQssqK+W3Uy9htQVAlvM76oHGNkMhujZAY2IsF2Y3pOK3/t5rIQEiWtX+0JKN5poiBELU5Ld2yws7UmBKYKIGCUUYI0AYevfIyNCcAs60WlMJpwF5GSJ8BEp/zlskD8c09p6mF20adrTcLnZtj9STSF5XqT7Ael0N9LiBcI2Q0PXHXW9/juAc+w08HK9UvaKOpMaUIWTnORs0XRSFdRijWl/2Jf5qPlxdvN14+bxJIVDaMIcPrUt+XukCkHklf16TokBEO3GvqgzhS5cfcH/bDHwjhne/24PvdpXhn1R7NVJdRNuPFRT8hJAPfbDsMQBsIVetea9DGUumvNh7A+oZ92MyeE7CfERKfx2GVEbLoFNiURn964uvRr3AUn8fs+NgtthaD2zdX7Nbsj2fEbrBn1rC0MRk6/XMmcmpMRuyFCS2JgRC1OS3ds8JjZ2qsYYpLORHqv/CVgEP8C9vjcmimxoZ3z8Er14zFJ7edqLmvODWmBDlWvYL0S571WR/xr3l9xgYArn91ZcNzOKL+8tcHoWJGSJblqGyP2+nAx7eeiEcvGgYgvGrMKMvwbsMWBH9b9JNmaszdcDzrdVNjXRqKePX7kunpt9gwWj4/pncHtU8REO6CrZ0ak/HOqj3qGAHj5fOZXqcaOAZDshqk6euaFEoherU/gF/9ZxVm/vc7/PmzSDO/ZduPaMZrNDWm70ytCYR0x6Zec6KPPkkt334E185ZideW71IvUwLQd7/bgz/MXa8Gg3b7CImBp9MhaTIlIrOVmUBiM0Li50Ef09iZGrP7R5j4Ol9avD1mAGV3ub6m5k24T2NW8TVnRigkI+ZntyUxECJqIrOpMa8mIxQOKJQMj35aQglGzhga3sJDWZYsBlMup4RTB3fGkK7afj1ZBjVCZn9Byw3PJd7HaHWYflxG7HSorqsPoqougNJqv+F0i8flQE66G8f37QAAOFrlt6zT2F9Wqy5d9zgdauZHrRFqCCq65YSzTGYnVoV44jDLRnjdjqiVduJJYl9pLe5863t8L+wLZlQsnS5khMSxVtSaZIQaNvWtrQ/h25/CjQv//vV29fpwICQs4w9FZzDEztT1wZA2ENK9XvEvdKMT/Q97SqMuU4LWWW9+j79/vR2frSsGoO0s/Yt/LMNmg2XvgHYbjZBs3tBSnDrSB2n+RvbL2V9Wg4/X7tdkfsRjqD+emkCo4ecf9pTiype+Nb2PmXg3l7XbR0jMSorHSV/vVVFbj5cXbzfdIgVo5oyQrP28JaILdlMwEDLALTZat/MLw6uz+gvLypvTtLE9AQDDe+RoLjfabkOtETKZGrvhpH54+IJj8daN4xtuLwZCsZfSpzWcsM2aKionfrH/j88ie2TUS0i9n8F1+vqs2voQRjz8OUY8/AXKqqMzH8oxym046ZfXBjT1AltLKjVLbfeX1ajXe90ONVDUL583ywi9uXK3afBgdhLzuZxRx0gM6pSiZ7PrjYqlgcg0nlmNkBIImU0hHKyow9aSyDRlMCRrTuoHdeOqqgvgqFgjVG8eCBmd9IzqfvS1K+sbuqKLt/16yyGcIWxPIhKzAvWBkK0AQT/dKWayQiEZsz/ZgOP/8GXMBot3vvk9fvWf7/CXzzepl2kKxqOmxqJXjf3suW+wZOthw/tbvwbrAF3Pbo2Q+BGuFI6T/p27/4N1ePij9bhCCOL09J+BRGaEAFmTkUx2RoirxgzMnDkTM2fORHl5OXJycmLfgVLKVSf0Rp/8DBT2aJn37ueje6BvfgaOadgrTCFmc5SgRDnxGzVUVP5/9fg+wmNEvsLMlhBnarI7kRO2V7eCC4A6b5if5cVPDY36rLI+RlNj6uMbZJL032dlNZG+QFsPVkbdXjkuHdI9cDokBHV7hU15YqHm9vtLa9Ugw+uM7KmmXz7fNVcJhLTH+ddv/4AN+8vxwHnHArDXTdkoIxTrhC0ed+W2GR4nXE4HHFL4hKUGQiYnxQ7C1JiZVbqpr2BIhssp4eXF2/HxWm3TusNVfvU9B7Qn41BI1gQlRhkho49ffUjWrPLb11BIbTQVU15bH7VgQTy51gdl09cqjq2yNqDpXyUGnf9dvgsvLvwJQHhPteO6m38HKHVTRfO34e6pxwDQT42ZZ4SUbIs+e2l3T614M0L2a4Qizy8G2Pq3Q/ls/HTQvDWD/jmtCujjFZK1e/AlOSHEjBC1PU6HhJMHdVKzDM1NkiSM7ZOHLN2XvGGxtMmqMdOCa+Fys2n+TE1GKBK4WGWEOqRH9x4yIj6ePuNllUlSXP73yF+cRtl95XU7HZJpl2JRRV1AWyNksnxeKcA2yrb87/t9wphifwN7Xc6omqt/LN5ucmtoxgNo+wgpjwdEAiGzc2deQ7F0bX1Ic+IXfafrwRKUZdQHQ3j4o/VYqQuSJj++EB8JHX3Fz6A+MDfKCBkFN8FQSFN0XVweXupv9FH97MfiqMvEQMgfDJkWt4tBW0Wd9j0VT9ji9GSsbspiA9OSinAAJwZ1llNjTVw+H3dGyOCB95fVYPGWQ7rnj9yuUphy1ccwdqa5SnUZ3EROX8myNujl1BhRG2WUEXKbZITManrE6TCzE2aGWUbIIBBSHkMM2qwyQuKqsd+dOxSje3eIPL5RRsj0kSIBgUgM9Lrlxg6EgEhNjccVqRFSTlJHq8NTPz0b2hBUGfzlXaP5SzT2F7DP7bAMFo0YF0u71HED1jvQA9AE8vrVd4of9minf4Ih2bQeR6/KH1AzGPrPo2FGyCAltHF/Bf78aWRqaVfD6iejoP1DIQBV6IvTi016KlXqNmM1G6vy/gPmU4oKsSv2xv3hYyaej/WBu74btJHmqhEyygjd8cYaXPWPZZpVfOKYxdqzeFfWbSquwDVztJuOx9u53IoMbbY2ng1/mwMDIaJmImZk3GpGKLJqSGSWERIDJLOvCnGXeF+MjJBSwyP2HjLrOQRoM0KdMr246oRekecyyAhZTQ0YZWfEMXbLtbeTvVIX43U51fvXB8OFtgfKw3Uxyma0RmosCoyNGGWEYqm3yAgpY44Vg3UQAiF9QGeWIQqE5Ji1MXedMQhA+KSvZAb0GUqjbIrR1FggJONf30a2b9hztEbTcFP0zbbDKNEFOvq+TWYbcorHSh9Qi8f6sHD/WBvoiid25THEomR93YpRsXT0OOPvI2SHUY1QSUX4s76vNNJwUxyzOOVqtFGxlVeX7oi6LJFZm1BImxFKdo0QAyGiZqJZNaZkhISziTg9Zbpxq0UjOUWmyQoww0DIICNk1kEY0GaE0j1OZHiMgy794xvRNzsEtAGg3UBI2XhTnBoLhmRsb6h/yUlzo3OWT9N9W6R8n3/6434s234k5vN5XU3MCPn1U2P2Hivd4zS9rbi1iSgUkqOyRKIbT+6Pm06JdFhXAiA7GSE7BbtyQ+2TUSAUDMm44V+rNNeZZbqs6AMhMSg5WBEpEI+VEQppAiEZ8zeWaJd061fh2dhiw+4J3WwrETNGq8aU90MMqmSTGiGxy7SR2vqgJqAy+reYyGBFnxGyG0A2FwZCRM1Ev8WG/jKxKNosKyMGKWbfFZkm+z0Z1wiF/59lcp+o5xfmONI8Ts1z2T2hK4wyQuJjdDPZwNOMx+nQZMy2lIQDpD4NQUJ2mnkn8Wp/ADf++ztbz+N1x58R0m66Gtl9HjBvdqmX5nYaNrQEgPxM84yQsnLLSPdcH5yOyIpC5SSqn6oxqiGxu4N5fTAUNY3y6zMHI93jxJrdpZqMlVHWRlzRaETfbkA8yYuBUKxVTuIY95fVRE0FWRdLm9QI2ZyBijcjZNRHSKlnEgNDzaoxcWosRqHz2U9/jQmPfYWtDf+GOhpkHBM5NQZZuwgggXXYjcJAiKiZiCc85YQvZn7EXePtnBz1S9MV4sou8a9Y45N3+Hp9LyI70txO03ok7aOH6YM7o345YiBjNyOkEJfPA1BrY/opgZDFliqxOk5rnsflMAz6fnVKf9P7GBdLx252qXletwPpJvVbHU02EA6GZNO+REBkJZqSLVMyQvrmikYZD7t1JuE927Sf1eHdc9X3V8zUGAUrgwoyLR8/KhAyCVBiBULiGI2m5KKKpW10lra7xUbcfYQMIgUlMKk2qbWJp0ZIWT32ydpizWOLEjo1JsuaYJA1QkRtlFGNkHbvsMjJzGovpVjEni3iF4pRlkm5euKAjnjgvKH49y/HWT62+PXkcjp0XayNpt4i9/jjJcM01yWqRki9r1MfCIVrh/o07HuWY5ERiqcnSnhqTBuQpHu0bQ70lJNmfTCknoSUaUW7GSGf2wmfSUaok0UgZLXUOq+h7kjZ4FI5IesLrI2yP7YDoVAo6sRm1POptj4YtbINAAYXWAfp+vfOLNsRq0ZIHKPR5yHWqjGj+9jeaywBq8aUy7QZIWHVmHC5ErjJsoxvf4r0PdLvQaYcS6vAy44jVX7sLTXfLFiGNoCze9yaC/sIETUTsRuukvkQMyAdhekNq72UFHa+K8QvK+MaofD1kiThmol9Yz+gjmZqLEbdTF6G9mRt9Fe3GMiY1b2I0txONaPgcTngdEhqX54tB5SpsfCKsew086+3ePY58rm1tTrj+ubh4QuOs9z2QTmhiF/28dYI+VxO0z5OHdLd6usWBUOyJnOhp6xEU6bclL/K9XVFRkGP3c7C9QYZIZ/LqW5FEwjKKKupx8XPf6NpCKno3zkD9587FGU19fjXtzujPjf6cZgFaGZdqhXiGCsNMoT6k3OdLhAyWgVpJ7MRCslxd2k2mhpTAjMxqBKHLBZLK7ddtv0ILvtbpKWF/rOoBkJNzAhd/Pw3OFBeixW/maL540kcJzNCRO2AuIRYqbUR/wLTBkJ2psZiG9snT/3ZeNVY04gbvBp1ixEfX19nINZvKMQx+txOyywOAHTOjgRXyhSTshJvx+Hw0m1l6bxVjVCsk6TI5ZDgFTJCT142AoO7ZFkWsisnZ2XZt0do/mgnEDp1cCe4nZJm1Z54bDK8LsMptkBIttxyQlltlq6bGvuhoW4nu2E1oXGNkP2pMX1xr9ftUN8nfzCEj9fux9aSSuRlePDktBGauqCCLB+undQXd5w+yPBYidkqWTYPKvQr0vSCJtkT9fqoqTGhyDsQNJyCtHM+r7dbSCQwzNCoxdJmU2ORDKzyedQ34NQfX+U1ioGXUo8WlMPNM60afALh92TH4SpU+4PmqwAha6YHk50RYiBE1EzyM73Iz/QgP9OrnpTFL8+8dI96QhrXL8/wMYBIc8BTBnUyvc2Se07Dv385Dsf3jREIxfl9k+3T/jWXLqwaCxp8oYuP31FX0HuoMvpLUT99N9SidsnlkDTLxvXduhU9Go6XdY2Q/akJSdIuHVeOgWVGKKD9a10MIGMFQicOzMcr1xwPSZI0U3J9OqarP9cFQoYZuVhTY8qGu8oY6hoyG9saun4rgbRRcGG3s7A/GD015nM51azn//vXKtz77loAwIwJfXDhyO6a97CD8B7rp270Y7MKzmIFu+IquEqDaVurYml/IGQ41WvnhG53A1XNfUxW4QHhz9hTX27B68t3mTZUVN47fZG91+XUBFn1uqmxaWN6qlPAwZCMnz3/DYbe/5lmqxa9QEhWvwfMMj219SF8LTSDTHYgxKkxombidEhYcs9pkCCpX+jlQhM9l9OBZfdNRkVtAF1zzOtj5t15Mspr69E5y3xVVffcNDVgUhgtSY33C+fKcb2xeOshTB5SoL4mRayaAX2vG6OMkD5tPmlgPpYKNQwil1NSa1yAyMlcnFb0OB3Ib6ifscou6ffhsiJB0nyhK8GrnakxfQ8hIHaNkEs4xuLUmJjhcjmkhj5O2pNxMCRb1vIogZUyBn8ghE9/LIYshwMtpU7LMCMUo+ZGETAIhPSF7YpTB3fWjAfQtpUwuo9Ym2NUdNwxw4PDVf6YGSzt1JhRRkj7uxgIldbU47bX10Tdx+jf1497y/Dgh+twz1nHYEyfPMupSzNGGSEls/T9nlK1WeXYPpGGp+IfXcrYM73afxNul6Q5TsrtlMDL7Yp8dwWF1gwLNpfgopE9DMcqHie7dUVcNUbUholN/4DobsJZPnfMImGf22kZBJnxx+gdYkeax4k51xyPX5zQO+q6WPP6+qkbo4xCV92S+V9O6osLR3QzfDy3w6HpthwJhCLHt2uuT205YDU1VlJuPxCCpH2tauG7xdSYchLSd5UOj9t61ZjYTVycGkv3OHHf2cdgQv+OuGBEd8OMUCAUsrUvlZKB8QdCakPES8f2VD+rhsXSNs9WgVB0jZDX5YjK3PXKS1cbX4ohZV4cGSGjWq/ODVu1xKwR0vTcMZrm0vcRijzvF+sPqH2rNPcxOEQzXlmBlTuP4pIXlkY9jl2BkIzy2no8M28Ldh6uathgN3yd+FkWj4f4sxIc66csg0FZE1jWBUKQ5cj+cS6HQ30PxKDGqqeUGIjbrf1hjVAK4u7z1FxibauQSEYnxERmoO002DvBYsoPiF4p5nM78eRlI6M2sAUAt8uh7r8FRG9bAgDdhMyaVUZI2VvKDgnGX9RWjSiV2ogqo4xQjHowMcOVJkxFZnhduOGk/vjv9ScgzaTZYrg+J/b7ohy7g5V16v5cl47pqT6mcjJ7b/Ue3Pnm96gLBOFvQh8hn9sZld158/+NV4+hWDgrTmm6jAIhITNlFOzkNBTJ1waC2H2k2rTTduyMkH5qLPZxNQpyDumyj/Fsd6F8FuqDIfzhow14/IvNOPeZxYYbwAJAeY3xlK8aCAX1wZ2MWt0WJWc/vRjPLdimPr+y6EMslrb6jPkNMkyxsKFiCpo5cybWr1+PFStWxL4xURyMuis3F8NAqMnl0hFG3W71/nPdCfjlJO3qNDEQ6GLSRNFoSsTlkDT1Ix6DqbHuwkaa+vom0YE4MkKSJMXdTO5ww8lPWY0U39SYcUZI3zjTKLNktKT76vG9cefpg/DeryYIYwjfV6n18LjCU4oeoXYIAO5443u8890evPvd3ib1EfI4HXALrzvb59K892I9ixhgGk0/iid+o0BI6Zpe4w/ixD/Nx7nPLEZxWXTgK45RCVgLe+aqGamoGiEbr9/oGOmzWrYydi4HBhdk4Rcn9AEQPqbLd4S7oFfUBjRjFw+12R9aSoCmf18CIW0bgAWbDmKD0JDT5YxkhMQYSpyq23GoCjf+axV+2FOqeS6j5zPDLTaI2hGl2V+WxUk6UYy+cBuxYMWUuN2GGaeuwBnQnty6mdRGGZ0A3U4HctPEqTGnerlCrJNKVEaosEdO3Kn7Kn8QNf5gJCPkMS6WNsp4iK9d/Fn/eoy2/TCaKkrzOHHL5IEY2StSP6IEo6UNJ04l4FJqiPaV1mgKyvccrba/asygj5DDIWlruXTBoNHmuADgNJh+FMdhlMlRMkri7X46GL1M3ygj1CsvXa3Lit5iI/brN/o3p3+P7WSWHjhvKD674yS1uD0QCmk+N2bZ2HKDAm4gEqDpV6wFgrJl7ZfbIdYIiZmeyPPf/Np3+HRdMc5/donmucLjtn6tLqH+KJkYCBG1oOevGo3zCrvhnZsmxL5xExktox7eI6fJj/unS4ZjeI8c3H3m4KjrjLb70E/hiCcosy0kjOpv3E5Js/rKaGpMrDmyrBHSFW4b9XHqm5+Bd24aj4EFWZg+oQ8A4LxC4/olI4er6qL2GRPHDUAt7NaMRXjtuULh8M9GaYtTjTNC0Sc1r0F2TRlDaXX4xKmc/E8a2AkOKZwZEDdTPVLlt50RMuojBGgzgbGmBxViEKG0oxA/P0ZLuQ37RxluGBt9Yve5IhkQq1VjAFCQ7cW7v9L+O/YHQgiFZM1Ujz4QsnMcezW0gHCpU2Oy5t+R2RJ8s8RKpFFi9GuyajOgyQhppsbEjFC14XPp72NECcC5aoyoHRnQORPPXD6yRZ5L/ML97PaT8Pm6YvzyxPibKOpdOqYnLh3T0/C6V395PH799g/43blD1cu8uq7Mdv76M8oIuZwOTaClnEzFIEbsR2OVEdIv//W6nKgPak+qPTqkYXTvcI1T3/wMrHtoqmmDQyNfrj+g1myYFUt3zvaiWLcju/jaLxrZHdsPVuHycb2iGk4a1QgZTY0ZTcUp9y3XZYSGdsvGRSN74J3v9uDVb3aot99WUmWZEZnQvyNq6oNYvavUsEZI/7rsdtcWg4hsnxtlNfWajVqNMkJZBm0TjLZUMYolvG6HWhOzdNthHNstR82S6QOYYd1zowL2QEjGBUVLEAjJ+PDmiXA7lf5JQuGyjcyS0h1defxAMKT53NipzxOpGSHdcwdCsmWXdZdTMgyExIyQ1+WAWAalyQjFeK0elwOo46oxImom4vTb4C5ZuGXyQE0foOYwqlcHfDnrZJws9DyKd3NWQLtySr3MIWnGH+nWbZxhscoIHa3WTiHY6bmU4XVptjOJ5cH/rccLC7c13Dc6kwVE/vIXiSf/rjlp+PPPCzFKmNZSGK0aM5oaM3ptakaoJhwQipk5pWnlPqGuZtvBSssplP9cNw65DcfbqEYI0L5PtgMhg6lBvyYjZDAV6HZGZfiMev4Y1bj5XE61Rukvn2/GnW9+r16nDyKG98gxDNjX7i3Dhv3l+HzdAQDR2UY7NULKIgI1IxSSNe+33SJk/e2VAPXUweF/n8EYgZDbEQkM60xWg0U1ZYxj+bxy32RnhBgIEbVRj/1sGIZ1z8ELV41K6jj0+3TdPTU8pWa0JF9htCDL43KgsGcOvC4H+nXKUIMS8WSUL2SEMjxOw+XXRhoTrMXDbI+247rnRE2dGAWBRnw2i6WNpqGUy5TiWjHTZVS3dLjKb1lXJUmSGuis2HHEcJ8pj41AKE33WRELx5VASDwhGzXG9BjsDadfHi/LsmEXaK/bofnszV27X/1ZX9szrEeO5dY4H/8Yvm9jiqWV+yifhXBGKHIs4t20tT4o4/pXV6oF32Lga7VJr5gRMsv06I+1WcBkRPkcJHJD18bg1BhRG9WvUyb+d8ukZA8jKsiYMaEPzhveDT06mPdPMvoCVTJCa+4/Q3NyqREyFeK2HpIkIdvnisr+GDHejiT2l/NVJ/TC/I0HIUnAnqPmm0xmmtQIDeiUiSzdGK0aNYrEDIGy75hxRig6YNLXCIknM7PgMdZxVAKht1btsbweiA7OctPdKK2ux4kD8zWXi0FZJBCKvEajKS+PM9yRWzzB6zNCZidon8upboejF5UR6p5jGUQs3HSw4TXo9vOKZ/m80sMnKGuO3+GqOPpgNfhi/QG1aF98v42OoUKsERKn9MRO1/p/O/piaaul8cp9uWqMiNo0MRByOiSke5zo1THdsg+PUapc+es4zaNrUlkdqffR/3Uaa+8yozHG4/cXDsPi/zsVHdI9lrczmtIDwjVj+poWq0aNIrFmRFnBV2uQKbCaGlP+ehczQnb2vTMSK4Czmhp756YJuPHk/vjjxcM1l4tBmVIEXVcfwt7SGqzaeVTTf0h8Hn1mqaI2gEAwhNeW78L2Q1WmUzZet8M0EBRP8B3S3eiY6bV8zZV1AciyHPfUmFgLpnzm63Vbp5jt4RWL8rrF41NZZx7giqvGNFNews9iDeCFRUuw7WCV5nZWWSHlM5zsVWPMCBFRsxKDkyyfvTobo2JQs5VGVk0qreqERLG6PVuRJEkT1DkdUtQXe6ZQIyRuNdIzLz2qlUJjMkLpXicq6gKa5ngKw0BIdyzTbGSERDMm9MEcoZgaiM586LldkcfVB1v9O2XinrOOib6PcDtxamziY18B0G4pId5H31qgvDaAt1btUfc4W//wVMMxel3m06lKRuSFq0Zj4oCOhq/D6D76qU5lNWe2zxXVV+zUwZ3w8AXHCa9FyQiFEApFxnXYYN8+O5SpRPHfZKXl1JjDcGpMXyytWLO7FGuFBpaBkGyZ7fGwRoiI2gNvjOJgI8YZIeMTlFUg1NwZIYU4tNsmD9RskApoO0Trp6H0gZDdjIwYvCkZJ6MGg4Y1QrrXK47PqEZINO/Ok/Hg+cdGXW5VL6Mfh93j7dRMjYWzbuIUzYodR6Pu43EZZYTq1X2yAPMiXp/bETU1ptSvKBmRHh3S1CxerKCx1h/SHM/6YEit0xnZqwNeuUa7e8Gff16InsK/EZe6akzWTAk2NiOkTIO5nQ51XFZNXt1OST0e2imvEHYcqsL5zy7G8u1HNPcR/wgIhmTL3mVqsTRXjRFRWyae+I/rbq+PkVGq3GmSSbLKqlvtQC8yWoEVD/GE2CHdjXvOGqK5XmyoePnxvXDpmB74x/QxABC1LD5WIKJwC7dTpraMaoSMgg59IBSrWFpk1gw0ViZLfNzGLJ+3G9S6hY13FRW1AU39WNBk+blRRkipA1KyIOLxjDWNWVMf1AS2tfVBNaByOx04dXBn9OskTIVFFc4rq8ZCmh5RjQ2ElHYDbqekPrZRC4LIeCIBkxgI1fhDOOUvCzTBpULs6B4IyZbZHuXYsEaIiNo0zSqpbvYCoUSVDDRlaiye72Zxus/hkKIaRYq/Z3hd+NMlhZg8pAAA8NtzhuKv0wrV6+2uGhPjQqVGyO7yeX1wpJkai/H8XqfxNGLsqbFGNFQUgivDRokGPC4J/+/k/prLKmrrNc0pD1YaFxv7hD5CCqUwWcnkiIFNrOCvpj6oeZ++/ekInvlqqzpOPX3dXGRqTJsRakyxNBBpQOl0SGoQ97ZJcTugWzUmZOK+/emw6X3EmrdgKGQa5DikSOCX7FVjDISIqFl5NRmhbFv3iadmYEpDQDHNoMmj7ZNnIwuEFeLJ0yFJUVMzVtuRZHhdGNsnT/091hSTQgy+0htqkJRmg+Lz26oRiiMjZJbNMbtcmQ5tTB8hcYuNTK/LVv2Sx+nE8X3zcPfUweqxrKgNaALbPUerDe/rdTmhj+eU7EudsiO7yRYoRmr8QU09zfWvrlRbCyjHQ3yEqIxQw2DqgyHNsvTG1ghVClNjbhvvgVsIhMTnN2qPoKjT1RKZBTkup0MN/JKdEWKxNBE1K3EqZVBB9K7yRoymxsy+Kp+YVoivNx/C5CGdo66Ld2pMkuLLBCnEE7RDiu6HE6sjtSbLYHPVmEgJbJSMUKbPpf5sp0YonqkxsyDG6H7/7+R+mNGwPYmdPkJWj+l1OeF1OQx76PjcDnXqSAl+Zp46ACcOzMf5zy5BZV1Ak1Exa3VgtGrscJUfsiyrU0PiVK+dqTGz7spqIKQLokVKoBUIafcEszs1NnFAR/TpmIH/LNsFIFIs7XJItqZgXQ7jYmkrNcJKvmBI1qwiE7kdws72yY2DGAgRUfPK9rnxn+vGIc3jjFrebiae5bTZPjfOGd7V8Lp4i6XT3E71RBtPQCROaUiShDSPLtAw2INNJJ6U7NYIae7fcMJUiqUzvS51dZrV8nmFGLhZZTlcwnLq6DFEP8+vThmgvgfaPkL2PgfiWHxuh2kglO1zo7Y+/HrFTIcyTVNRG9CcyN9bvdfw+bwGfYSOVPk1WQ5xWtGqBQQAXPz8N6bXKe+BVUZIOWZbS7Sbxsbq6fTCVaOwbPsR3HRyf3TO9mHH4Sos2XpYDY5dToetonyXU4KE6KkxK9XC9Oz3u0vxwIfrDG/nFD5LyZ4aYyBERM1u4oD82DcSGGaEGpGqGdLV3lScUiPkEwKheIixg1OSogI+fYZIz25dkOnzN2QmlKyIuKWH0QnPamrMaMd3q8dSrzMICsSgSZzycxvUxxiJzgg5AUQHATlpbnUjXfG1KdnIyrqAZnXU6l2lhs/nM8gIHanya7IxdoP5WIwydfrnNguKS6utM0IDOmfizOMifxzou5CLxdJWxPfb7j8/8XZiZ26jx1anxlgjlHqKioowdOhQjB07NvaNiSjhElUzMLp3B3xzz2kxbydmhBR2OksrNFNjjuganVi1LXbrgkyfv+Hu6tSYkIEyem6rjJA+oBFva5WtMtsfTn1c4XG8NgM/MSjzuR2mq/vEonhxvB3SPSho2DtN3/fIiNfljCqWrgtEdmh3OiTb7Q1iUd5z8en0PbbMnivWHl76rJb+uImrway4HJJpp219wb2+ZQRgHTw5HZK6nQn7CKWgmTNnYv369VixYkWyh0LULiXye1HZwNKKcvJs7DJ6h75YWsiw2JnpakxdkNjNWgkYxKkxhVEmLbpGyDxwEoMWp0XAZhTMiY/VmBoht2ZqzGnaf0icAhWDB6dD0jQojMXndkRNdwVDIXUPN18C96SLFEubH9M49vjViAqEdBkhl82ATuw3pNctN03zfozvH531tfpjwu2MrNBjRoiISOf4hlVUYhFvc35VegwyQlYnKD1tsbSkmYow+4ta1JiM0CWje+D8wm740yXD1ZOVkrkQN3nNy4je/iNq+bzHvEZIDA6NejkpFxmdWMXbN6aPkHhcw4FQ9LSUJGkL8vXHcmTPXM3vHQ2Oh8IoIxQIyeqUozdB02KAUCNk8dbnxti6xYz+M6efhnM57QVC4vJ5vYJsr+Y9FbunK6z+oHE5Ix3Zk10szUCIiFLOb88dgrunDsbHt57YIs+nnBR8jZwac+gCIU3xtI37i1Midp/X43Lg6ctH4tIxPdXnUzJCPpcT7/1qAl6/4QTDk6m+WFlTLK3LToknUaPiYOUSo5oTh8nUmO0+QppAyGGYETqhb0fLbJO+p1OmSUNIIJxJ0yfngkIPn+bICFnpnpuGl64eY3q9WZCifw1RU2NOh+Zz9s5NE3Bst+h6OpcjutO2omtOmub50yxaRBhxalaNMSNERKSR5XNj5qkD0Efoutyc35XKCdfndqCwR7jp489HR/clMqOdGjO/rrko41dWN7ldEkb26oAT+nU0vH08y+e9buul9crri7WUXBus2F01JtQVuZzYVFwRdZufj+mhyarogyx9cXOmyQo+j8thuMWGmBFKVKG0OM5Ye+9NGVpgOr1qtioyempMe0zcDklTAF7YI8cwqLIqqi7I9mneH6Nieat/sm5H6hRLc9UYEbUKif6qzPK51O0T1J3t3U78/eox2HKgEsN72OuCDWhXjUVlTZo/Doo6icXKNugDIXFqSf9YmoyQwUlbuSye3eftTgXqM0LZaW5U1AXQLceHS0b3QHF5Lc4v7IZvtkU6Hetfu9vpgNspqY0NxdfqkCLTMrlpbkhS9FRQMCSrNUJ2p/TsiGc6NN3jMtwKIyfNbdhTKGaNkNOhaQngchpnflxOh6YhpKhrjk9zrIzqx6wyPQ6hWJqBEBFREvTvlIk1u0sBQF1Z1CXHh3SPC4W6upJY9FNjmutaICNkFbwY0Z/QxToiqxoho2BHeXmxWgCIJ/5G1Qi5nPjzJcPx2ord+O05Q1CQ7VOvE0+4Ro+d5naiPhgOJDK9kSyK2C5B2YLDqEaozqCZYlMpWTE7n440j9M0EDISNTXm0k+NSZoGk4DxNJvbIaHeJB3VOUtbI2SUEbTK4jqkyHM2pjVGIjEQIqJ2aUjXLFw9vjc6Z/lwQr88vHLNWIzq1aFRj+W0mBprgTjItBGfGTFQys/0aKZn9DVC4knUqFg6MjVmPyNkd/d5JbjyNPScmTAgHxMMelKJDfmMpu/SPE61j5CYERIbNCpBheWqsSZuzisyWj5vxqwPld2pMX1w6HJIUZ2ijd5bl9MBp8O4kWJuukebEYqzEagkRcbJLTaIiGxI9F+NbqcDPxvVQ/391MHRW3TYpe0jpD0h2D099O+UgW0Hq3BKI8ah31w2VsZFzM7od2qPyi6JgZBhjVD4/7EyQuLjxLvFRqzASZxZMaq5CbcHCDdcFGuE0txOHG1o0KistDNeNaYEQi27akwcpyLTG5kmEzeSFelfQ1RGyKGdGgOis0iAdmWXnn5qzE6DRpGEyDSkzabVzYaBEBG1S43p3WMmEVNjn95+EqrqAo1aMt1XKCoHYmeExGChU5Y2ENKf0PR9eRTnDOuKuWv344aT+jfcLp4aofimxmItW4+16kgMYMRVY+LlSiAUnRGSUdsQNNjNZNkRT2NGn8c4EMpJc6NPx3TU1odQXF6r3ia6oWJ0Z2l9IGQ8NWbcR+j2KQPRJz+jyRkhdYsNZoSIiMydV9gN//t+H246uX9CH9fuNg92JGJqzO10NLpvTP9OmbrHsv/a9BkhMUB0OyXNaxNPdk9MK8S1k/piREM9VawTuxhg2e3RpLyOWFNSsU6kacL9xakxMTOV2bD8W//+hTc8TXxGyE5DRUW6PpArjzzGJ7edhJAso/Chz9WO01LMGiFHVIGycbF0dGfp0b074PYpg8LPL3xW4t0jT0Lk30ayi6W5fJ6IUtpT00Zg5W+nGNaGNEWs5d7x0PxlrDtxZPvsbfzaFL07pmuXkMeRucjP1AZfLt1f+Q6Tv/q9LidG9+6gXhZz13ohULIbHCods2MFIKEYUyti5+wsr3FGKL2hIaD+nBzuI9RQLG1z2b8drjhqhAZ3yVJ/Fqf2XI5wF/MMr0v7PtmoEdIzyugY7VJvNg1stUedEUliHyEiIlscDikqa5EIWRaN9eIl/tWsTDsVXTEKfTqm4+nLRybsecz43E707BDZ6ymeaZdeedo9ojQbpTocumyX+Vk79qoxIRCyOTalADt2jVDjpsbEzFlGQ7Ck3wldWyOUuFOm8jx2jsWdZwzCpWN64D/XjdN8bsUsm9X7pF8+H6sLuEKSomuExNuJ3aTjzgiJU2PMCBERtZy7pw7GiJ65uPKE3gl7TPG8opwPzhneFQvuPhXHdbffj6gp+nWK1AnZOSndPXUwThyYj5+P0TaOFE+S+i0WrB431nScJuNg85zZuaGtQdccn+XtYp1H0zQ1NpEMnTgmpUZIv4IpGAqpGaGmbLGhjzP0q7asZPnc+NMlhZg4IF+XETKu39I/lz6QNCx6N3lv9bcVg69HLxqGbjk+/OGi4xpRLJ06q8YYCBFRuzLz1AF4f+ZE0w7DjaHpLB3nX8aJct7wbvC6HOiVl27aUVo089QB+Ncvx0VNOzl10x0Ok6kQvXiKzzNsbscwqlcHvHrt8Xj0Z8MsbxcrI5SuW3WlEF+rkt2wzAjZnHIc0jUbXbK1wdu8WSfjt+cMUX/3K0ul4uyvINaRicGn+NZEbZyr7yztlPD4zwsBAE9dNiJ8H5Nx6INf8bM+sCAL39w7GVeO692IjFCk/oirxoiIWjmrVWMt5eLRPfCzUd1jbtkQi8uhPbmKf+hbnew8NorP7z3rGOw5WmO7a7ckSThpUKeYt4s9NWZcLC3WtWQ11HJFZ4QigZDdjFCHdDfm3jIJx/zuUzXg6dcpE/06ZeL3czcAiBS4x/tu9eiQZjh+/ca/Iv24XU4HLh7dA+cM76oGwqb7lukey+wzEHeNECKZ1GRPjTEQIiJqIqtVYy2pqUEQEL183qxY2uDZYz72/0vwyj9FrPOoeJIWM0IOCfjFCb3x3a6jOPO4LgCiVzBpdp83yAhdPb43Xl26E7npbpRW1zc8X7i2xumQAG0DZ8y9dRJ2H6lWp0zjfcvEQEjMCDkd5p9BfadxpfZKzAaaZfuiMkI2bxeLuDlxsoulGQgRETVRKmSEEkU/xWW2fF5PPJldOKIbzh3eLfGDMxGr2aYYB4gZoZAMPHLhcZrb6gOhYEjYfd4gI/TQ+cfi5lMH4LkF2zDnmx0AIp8Bo+N1bLccHNut8XVjPYSieJfJ504fEBvtPq9nVuKjD3zMM0Jxfu6lyGcr2TVCDISIiJrIbrDQGujHb9UaQCRe88SlI1q0VipW8ClenyFkhIymZKwyQkaBkCRJ6Jyt24C04Wc7hyDeo9RTyAiJrD53RnuN6VnXf0lqj6JEZYTCU2NcNUZE1CaIf2C38oSQ5oQmSfanxgZ0zsTkYzrj0jE9Wrxg/P7zhqIg24sHzhtqeL04bnGayKiRn36axu5eY0Y1OrFaCgDxT2eKrSQOVtZFPaeRqOXzBvU8+iBX3L5DfD8TlRFySJL62k02uG8xzAgRETVRW5oas5oKsTrZSZKEf8wY22zjstK/Uya+vXeyaVBh1gTQKBCKyggFxS02zIulHZqsYPRlZuL9tIjj318W2VbD6r3R70lmdFvxslMGd9L0v9JkPM1Wl8W7fF4oxE92jRAzQkTU5nVu2E+rZ57xtEJTtaWpMb1UaA1gh1VmxSwgMToB67MTQc0WG1YZIfFnKeoyM+P7d9Tcx47eHcN1QpOPKYh6TiNup0NTJG7U80l8bwd2ztR0RLcTDMe7d18qNVRkRoiI2rzXbjgBzy/YhptPHdAsj2+1Yqc1E3cIB+KvA0kVZidvoyJd/Uk5GJLV+hirrT7ElWnq1JiN4GDmqQPQKcuLk220CVB8MHMiNhZXYFzfPOE5re/TPTcNmw5UADAOGp0WAa+d6dG4N11FZNVYsvcaYyBERG1e/06Z+EtDA7nmYLVip7WzWyydyvTNDRV2psb8wRDKGpbFW+0bZ5QVtJMk8bmduHp8n9g3FOSme6KaZsYKRLrl+tRAyIimIaNF7yDTjFCjpsZSY/k8p8aIiJrI6iTS2jnawLTfz0Z1xxXjeuEZ3b5vhoGQ7qS852gNKuoC8Lkd6C9sY6KnmRpTls+34GchVj1St1zraWGrrI+djJBVtvDtG8dHXabtLM2MUMopKipCUVERgsFg7BsTUbtn1dW3NQvXcUR+b62BkMvpwKMXRW/TYbhqzOSkPKx7juUqMHFqTMkKZiRwG5dYYmeErAMhp0VW004NnFVn6ey06EyaBAgNFS2H1uyYETIwc+ZMrF+/HitWrEj2UIioFRD/Ym5DcRCAtl0IblwsbXxWHtEz1/KxtAFj+P+PX1qIHh3S1H29mlOs92bSgHzb99dnsuxMj1pvyBsdajiEIDvZU2PMCBERNVFbDhbsb7HR+hhlhK4a1xurd5Wic5YXJRWRPj3DeuRaPpbRFOIxXbKx+P9OS8xgY4iViSzsmYuXZ4xB1xzjzJD2fdZepwmETGqBrFetRV/HqTEiojakLfUR0mvLQZ7RCfhno7pjSNdsOB0Spj65SL0812B6R5Ts6VE7781pwnL7qPtbrBpzxZkR8rgc8AciW8rr9zoDtJ2lkx0IcWqMiKiJUmXT1UQT6ziAtlcIbjQNJkkShnbLRrpHu1TeY7Dhqshu48nm0tT3xiqYt9NZWqyfsnPsxIxQkmfGGAgRETWVU1Mj1LaCBaM9tNqKUMj8Ov1ycKOd50XJzgrG2c8wilX3aG1W0PiJxM9Guq7fklGNkCRFjlOyN11lIERE1ETieaOtBQvtbWpMoX+tsTJCyT5OTX1OMVbRT405LeqHFGKmKM0TOxC6eFR3To0REbVFbSlWkCSpbRdLW2Qi9F2hrfYZA5KfOWtqFkqb0dJep31tNjJCHm35sb5Y+qNbJmHqsV24aoyIqC1qc1NjbTjblWnR50f/WmNNjbWGYmnL+1tktOLNCOmPq/7fxHHdcwAgZVaNMSNERNREUhuePmoLW2zovXT1GAwuyELRFaNMb6MvCo4nELKz2WqiNfW9sQrk4s0I5WV6kJ/pjfmcyvOwoSIRUSsnnjbaWByknRqLcz+pVDVlaAE+u+MkDO2WbXqb6IyQ9dSYw6LYuCXo63rivr9VRkjz2ozvL0mRDXq9TgduPrV/zOfk7vNERG2EeN5r032E2thrs6LPCMWzfL6pQUljJDYjZH6d0yLd5XJICIZkeFwO/GJ8H1TUBtCvU6bp7VNl1RgDISKiBGprgVBbLpa2Eu+qsWT3W2rqe2O1/N/u9KjLIaEO4VViToeEWyYPtHzOVMkIcWqMiKiJJJj/Nd3aJXtZeLJEbTwa47VbdWZuCU19Tqv3WQwCrfYUU+4XK2iM3D78/2RnhBgIERE1UZueGmunGaF4ifVTyeks3cT7azaN1T5Y56xI4bNVwKV0l7YbCElqsTQDISKiNiMZ2YDmMqggs91OjcUr2bVUZqu57BIDeH02rCDbp/5sJyNk1EDR8PZKIGTR4bslMBAiImqithYefHjzREwb0xN/vGR40k/wrYWm2DgJAeOsMwYhP9ODW2PU5ZixqgPqkhMJhCwzQsqqMdtTY6nRR4jF0kREpDG8Ry6GX5ILwHrKhCIcNpaYN6fuuWlY8ZspjW7oadUHqUucGSGj3eaNpMqqMWaEiIjIlFV/GYpwJblGCGhaV3O7U2NWNXAudWrM3jiU4yQzECIiat3a8owRi6Xtvb9WgURrYHdqzKqwOVIsbd18UqE8ZbKnxhgIERE1Wes78dnFYml7tVGtPWC0yvx1SHerPx+urDN9DCUjZHfVmCNFaoQYCBERNVErTADYJgYBVvUhbZmdwMZlkVFpDayKvcUMV7U/GPMxbE+Nca8xIiJKdcneVT0V2AmExGPTGlsoiPXNRsOfdfogDOyciWlje5o+BleNERG1U6N7dwAAZHjs1Ua0JiyWtve6k737fFPF2jT21skDYy7NH9EzF5sOVOCYLuab2YrSPE6cPKiT7cCpuTAQIiJqovxML1b+dgrS22Ag1NprXxLBzpSgNqPS+o5TIvogPXj+sbjnrCFIs/nvID/Ti39ee3yjniuRGAgRESVAfqY39o1aIfYRspsRcgg/t77jlIg95SRJsh0EpZJWmMAjIqKWwqkxm4FQK+/Ard19PokDSQIGQkREZMqqv0x7Yed1i1t9tc5i6fZbFM9AiIiITIknRVcy9o5IAU4br9slTo21wkCiPWf+GAgREZGp9pwpULhs7OzuaOW1VO35fWYgREREpsQTpJ2AoC2Kt0aoNcYR4vgZCBERETXQNgpM4kCSKN4tNlrjXmOtPaPVFO30Y01ERHawj1D8DRWTvZt6Y7T2hpBN0c5eLhERxaM97zV239nHwONy4NGfDYt529YeJGqn9lr3a4kXGyoSEZEpRyvvmNwUN5zUH9dO7AuXjRRJaz82jnbcJoEZISIiMtXei6XtBEGANlvW+ibGEtNZurVq85/q3bt345RTTsHQoUMxfPhwvPXWW8keEhFRq+FksbQtmuChFUZCidhrrLVq81NjLpcLTz75JEaMGIHi4mKMHj0aZ599NjIyMpI9NCKilOdgsbQtrb2upj1vsdHmA6GuXbuia9euAIAuXbogPz8fR44cYSBERGRDe+4v05609r3SmiLpic5FixbhvPPOQ7du3SBJEt5///2o2xQVFaFPnz7w+XwYN24cli9f3qjnWrVqFYLBIHr27NnEURMRtQ8MfuInt8K5MTEL1N6mxpIeCFVVVaGwsBBFRUWG17/xxhuYNWsWHnjgAXz33XcoLCzE1KlTUVJSot5mxIgROO6446L+27dvn3qbI0eO4Oqrr8bf/va3Zn9NRERtUfs6PbYzkuGP7ULSp8bOOussnHXWWabXP/HEE7j++utxzTXXAABeeOEFzJ07Fy+//DLuueceAMCaNWssn6Ourg4XXngh7rnnHkyYMMHydnV1derv5eXlcbwSIqK2R9xw1O4KqvYu3ZP0U2vcpHYX/kSk9Kfa7/dj1apVmDJlinqZw+HAlClTsHTpUluPIcsyZsyYgdNOOw2/+MUvLG87e/Zs5OTkqP9xCo2I2rtMrwt3TBmEWycPRF6GJ9nDSWm/PWcILhvbE+P65iV7KBSHlA5bDx06hGAwiIKCAs3lBQUF2Lhxo63HWLJkCd544w0MHz5crT/617/+hWHDojuF3nvvvZg1a5b6e3l5OYMhImr3bpsyMNlDaBWuO7FfsofQaB5XJC/idqV0jiThUjoQSoRJkyYhFArZuq3X64XX623mEREREaWWnDQ3Hjr/WMiyjGyfO9nDaVEpHQjl5+fD6XTiwIEDmssPHDiALl26JGlUREREbc/0CX2SPYSkSOn8l8fjwejRozFv3jz1slAohHnz5mH8+PFJHBkRERG1BUnPCFVWVmLr1q3q79u3b8eaNWuQl5eHXr16YdasWZg+fTrGjBmD448/Hk8++SSqqqrUVWREREREjZX0QGjlypU49dRT1d+VYuXp06djzpw5mDZtGg4ePIj7778fxcXFGDFiBD799NOoAupEKioqQlFREYLBYLM9BxERESWfJMty62uB2ULKy8uRk5ODsrIyZGdnJ3s4RERErVKfe+aqP+947Jxmf754zt8pXSNERERErd+/fzkOvfLS8d/rxyV7KFGYEbLAjBAREVHrw4wQERERkQ0MhIiIiKjdYiBERERE7RYDIQNFRUUYOnQoxo4dm+yhEBERUTNisbQFFksTERG1PiyWJiIiIrKBgRARERG1WwyEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG7xUDIAPsIERERtQ/sI2SBfYSIiIhaH/YRIiIiIrLBlewBpDIlWVZeXp7kkRAREZFdynnbzqQXAyELFRUVAICePXsmeSREREQUr4qKCuTk5FjehjVCFkKhEPbt24esrCxIkpTQxy4vL0fPnj2xe/du1h81Ix7nlsNj3TJ4nFsGj3PLaY5jLcsyKioq0K1bNzgc1lVAzAhZcDgc6NGjR7M+R3Z2Nv+RtQAe55bDY90yeJxbBo9zy0n0sY6VCVKwWJqIiIjaLQZCRERE1G4xEEoSr9eLBx54AF6vN9lDadN4nFsOj3XL4HFuGTzOLSfZx5rF0kRERNRuMSNERERE7RYDISIiImq3GAgRERFRu8VAiIiIiNotBkJJUlRUhD59+sDn82HcuHFYvnx5sofUqixatAjnnXceunXrBkmS8P7772uul2UZ999/P7p27Yq0tDRMmTIFW7Zs0dzmyJEjuPLKK5GdnY3c3Fz88pe/RGVlZQu+itQ3e/ZsjB07FllZWejcuTMuvPBCbNq0SXOb2tpazJw5Ex07dkRmZiYuvvhiHDhwQHObXbt24ZxzzkF6ejo6d+6Mu+++G4FAoCVfSkp7/vnnMXz4cLWh3Pjx4/HJJ5+o1/MYN4/HHnsMkiTh9ttvVy/jsU6MBx98EJIkaf475phj1OtT6jjL1OJef/112ePxyC+//LK8bt06+frrr5dzc3PlAwcOJHtorcbHH38s/+Y3v5HfffddGYD83nvvaa5/7LHH5JycHPn999+Xv//+e/n888+X+/btK9fU1Ki3OfPMM+XCwkL522+/lb/++mt5wIAB8uWXX97CryS1TZ06VX7llVfkH3/8UV6zZo189tlny7169ZIrKyvV29x4441yz5495Xnz5skrV66UTzjhBHnChAnq9YFAQD7uuOPkKVOmyKtXr5Y//vhjOT8/X7733nuT8ZJS0ocffijPnTtX3rx5s7xp0yb5vvvuk91ut/zjjz/Kssxj3ByWL18u9+nTRx4+fLh82223qZfzWCfGAw88IB977LHy/v371f8OHjyoXp9Kx5mBUBIcf/zx8syZM9Xfg8Gg3K1bN3n27NlJHFXrpQ+EQqGQ3KVLF/nPf/6zellpaans9Xrl1157TZZlWV6/fr0MQF6xYoV6m08++USWJEneu3dvi429tSkpKZEByAsXLpRlOXxc3W63/NZbb6m32bBhgwxAXrp0qSzL4aDV4XDIxcXF6m2ef/55OTs7W66rq2vZF9CKdOjQQX7ppZd4jJtBRUWFPHDgQPmLL76QTz75ZDUQ4rFOnAceeEAuLCw0vC7VjjOnxlqY3+/HqlWrMGXKFPUyh8OBKVOmYOnSpUkcWduxfft2FBcXa45xTk4Oxo0bpx7jpUuXIjc3F2PGjFFvM2XKFDgcDixbtqzFx9xalJWVAQDy8vIAAKtWrUJ9fb3mWB9zzDHo1auX5lgPGzYMBQUF6m2mTp2K8vJyrFu3rgVH3zoEg0G8/vrrqKqqwvjx43mMm8HMmTNxzjnnaI4pwM9zom3ZsgXdunVDv379cOWVV2LXrl0AUu84c9PVFnbo0CEEg0HNmwsABQUF2LhxY5JG1bYUFxcDgOExVq4rLi5G586dNde7XC7k5eWptyGtUCiE22+/HRMnTsRxxx0HIHwcPR4PcnNzNbfVH2uj90K5jsLWrl2L8ePHo7a2FpmZmXjvvfcwdOhQrFmzhsc4gV5//XV89913WLFiRdR1/Dwnzrhx4zBnzhwMHjwY+/fvx0MPPYQTTzwRP/74Y8odZwZCRGTLzJkz8eOPP2Lx4sXJHkqbNHjwYKxZswZlZWV4++23MX36dCxcuDDZw2pTdu/ejdtuuw1ffPEFfD5fsofTpp111lnqz8OHD8e4cePQu3dvvPnmm0hLS0viyKJxaqyF5efnw+l0RlXHHzhwAF26dEnSqNoW5ThaHeMuXbqgpKREc30gEMCRI0f4Phi4+eab8dFHH2H+/Pno0aOHenmXLl3g9/tRWlqqub3+WBu9F8p1FObxeDBgwACMHj0as2fPRmFhIZ566ike4wRatWoVSkpKMGrUKLhcLrhcLixcuBBPP/00XC4XCgoKeKybSW5uLgYNGoStW7em3GeagVAL83g8GD16NObNm6deFgqFMG/ePIwfPz6JI2s7+vbtiy5dumiOcXl5OZYtW6Ye4/Hjx6O0tBSrVq1Sb/PVV18hFAph3LhxLT7mVCXLMm6++Wa89957+Oqrr9C3b1/N9aNHj4bb7dYc602bNmHXrl2aY7127VpN4PnFF18gOzsbQ4cObZkX0gqFQiHU1dXxGCfQ5MmTsXbtWqxZs0b9b8yYMbjyyivVn3msm0dlZSW2bduGrl27pt5nOqGl12TL66+/Lnu9XnnOnDny+vXr5RtuuEHOzc3VVMeTtYqKCnn16tXy6tWrZQDyE088Ia9evVreuXOnLMvh5fO5ubnyBx98IP/www/yBRdcYLh8fuTIkfKyZcvkxYsXywMHDuTyeZ2bbrpJzsnJkRcsWKBZBltdXa3e5sYbb5R79eolf/XVV/LKlSvl8ePHy+PHj1evV5bBnnHGGfKaNWvkTz/9VO7UqROXGwvuueceeeHChfL27dvlH374Qb7nnntkSZLkzz//XJZlHuPmJK4ak2Ue60S588475QULFsjbt2+XlyxZIk+ZMkXOz8+XS0pKZFlOrePMQChJnnnmGblXr16yx+ORjz/+ePnbb79N9pBalfnz58sAov6bPn26LMvhJfS/+93v5IKCAtnr9cqTJ0+WN23apHmMw4cPy5dffrmcmZkpZ2dny9dcc41cUVGRhFeTuoyOMQD5lVdeUW9TU1Mj/+pXv5I7dOggp6enyxdddJG8f/9+zePs2LFDPuuss+S0tDQ5Pz9fvvPOO+X6+voWfjWp69prr5V79+4tezweuVOnTvLkyZPVIEiWeYybkz4Q4rFOjGnTpsldu3aVPR6P3L17d3natGny1q1b1etT6ThLsizLic0xEREREbUOrBEiIiKidouBEBEREbVbDISIiIio3WIgRERERO0WAyEiIiJqtxgIERERUbvFQIiIiIjaLQZCRERxWLBgASRJitoniYhaJwZCRERE1G4xECIiIqJ2i4EQEbUqoVAIs2fPRt++fZGWlobCwkK8/fbbACLTVnPnzsXw4cPh8/lwwgkn4Mcff9Q8xjvvvINjjz0WXq8Xffr0weOPP665vq6uDv/3f/+Hnj17wuv1YsCAAfjHP/6huc2qVaswZswYpKenY8KECdi0aVPzvnAiahYMhIioVZk9ezZeffVVvPDCC1i3bh3uuOMOXHXVVVi4cKF6m7vvvhuPP/44VqxYgU6dOuG8885DfX09gHAAc+mll+Kyyy7D2rVr8eCDD+J3v/sd5syZo97/6quvxmuvvYann34aGzZswIsvvojMzEzNOH7zm9/g8ccfx8qVK+FyuXDttde2yOsnosTipqtE1GrU1dUhLy8PX375JcaPH69eft1116G6uho33HADTj31VLz++uuYNm0aAODIkSPo0aMH5syZg0svvRRXXnklDh48iM8//1y9/69//WvMnTsX69atw+bNmzF48GB88cUXmDJlStQYFixYgFNPPRVffvklJk+eDAD4+OOPcc4556CmpgY+n6+ZjwIRJRIzQkTUamzduhXV1dU4/fTTkZmZqf736quvYtu2bertxCApLy8PgwcPxoYNGwAAGzZswMSJEzWPO3HiRGzZsgXBYBBr1qyB0+nEySefbDmW4cOHqz937doVAFBSUtLk10hELcuV7AEQEdlVWVkJAJg7dy66d++uuc7r9WqCocZKS0uzdTu3263+LEkSgHD9EhG1LswIEVGrMXToUHi9XuzatQsDBgzQ/NezZ0/1dt9++63689GjR7F582YMGTIEADBkyBAsWbJE87hLlizBoEGD4HQ6MWzYMIRCIU3NERG1XcwIEVGrkZWVhbvuugt33HEHQqEQJk2ahLKyMixZsgTZ2dno3bs3AODhhx9Gx44dUVBQgN/85jfIz8/HhRdeCAC48847MXbsWDzyyCOYNm0ali5dimeffRbPPfccAKBPnz6YPn06rr32Wjz99NMoLCzEzp07UVJSgksvvTRZL52ImgkDISJqVR555BF06tQJs2fPxk8//YTc3FyMGjUK9913nzo19dhjj+G2227Dli1bMGLECPzvf/+Dx+MBAIwaNQpvvvkm7r//fjzyyCPo2rUrHn74YcyYMUN9jueffx733XcffvWrX+Hw4cPo1asX7rvvvmS8XCJqZlw1RkRthrKi6+jRo8jNzU32cIioFWCNEBEREbVbDISIiIio3eLUGBEREbVbzAgRERFRu8VAiIiIiNotBkJERETUbjEQIiIionaLgRARERG1WwyEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG79f8BW3suNgSCF34AAAAASUVORK5CYII=", "text/plain": [ "
Model: \"functional_1\"\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1mModel: \"functional_1\"\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┓\n", + "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n", + "┡â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┩\n", + "│ input_layer (InputLayer) │ (None, 32, 20, 3) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization │ (None, 32, 20, 3) │ 12 │\n", + "│ (BatchNormalization) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d (Conv2D) │ (None, 32, 20, 32) │ 896 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d (MaxPooling2D) │ (None, 16, 10, 32) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_1 (Conv2D) │ (None, 16, 10, 32) │ 9,248 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_1 (MaxPooling2D) │ (None, 8, 5, 32) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_2 (Conv2D) │ (None, 8, 5, 32) │ 9,248 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_2 (MaxPooling2D) │ (None, 4, 2, 32) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten (Flatten) │ (None, 256) │ 0 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (Dense) │ (None, 256) │ 65,792 │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (Dense) │ (None, 11) │ 2,827 │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n", + "\n" + ], + "text/plain": [ + "â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┳â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”╇â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”┩\n", + "│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m12\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m65,792\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m) │ \u001b[38;5;34m2,827\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Total params: 88,023 (343.84 KB)\n", + "\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m88,023\u001b[0m (343.84 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Trainable params: 88,017 (343.82 KB)\n", + "\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m88,017\u001b[0m (343.82 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Non-trainable params: 6 (24.00 B)\n", + "\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m6\u001b[0m (24.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -238,1005 +314,1020 @@ "output_type": "stream", "text": [ "Epoch 1/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 2.1516 - accuracy: 0.3223\n", + "\u001b[1m 51/325\u001b[0m \u001b[32mâ”â”â”\u001b[0m\u001b[37mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.2469 - loss: 2.3019" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Muell\\anaconda3\\envs\\py311-tf216-opencv\\Lib\\site-packages\\keras\\src\\trainers\\data_adapters\\py_dataset_adapter.py:120: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 3ms/step - accuracy: 0.2822 - loss: 2.2734\n", "Epoch 2/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 1.4881 - accuracy: 0.5226\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.3882 - loss: 1.8318\n", "Epoch 3/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.9700 - accuracy: 0.6910\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.5754 - loss: 1.2654\n", "Epoch 4/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.8070 - accuracy: 0.7451\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7161 - loss: 0.8801\n", "Epoch 5/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.6602 - accuracy: 0.7991\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7768 - loss: 0.7268\n", "Epoch 6/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.5955 - accuracy: 0.8258\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8277 - loss: 0.6434\n", "Epoch 7/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.5233 - accuracy: 0.8474\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8044 - loss: 0.6498\n", "Epoch 8/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.4445 - accuracy: 0.8652\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8499 - loss: 0.4638\n", "Epoch 9/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.4406 - accuracy: 0.8735\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8493 - loss: 0.5074\n", "Epoch 10/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.4012 - accuracy: 0.8887\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8727 - loss: 0.4695\n", "Epoch 11/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3693 - accuracy: 0.8900\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8885 - loss: 0.3451\n", "Epoch 12/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3075 - accuracy: 0.9142\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8832 - loss: 0.4054\n", "Epoch 13/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3734 - accuracy: 0.8964\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8786 - loss: 0.4139\n", "Epoch 14/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3359 - accuracy: 0.9053\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8955 - loss: 0.4001\n", "Epoch 15/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.3208 - accuracy: 0.9027\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8891 - loss: 0.3343\n", "Epoch 16/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2705 - accuracy: 0.9256\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8960 - loss: 0.3246\n", "Epoch 17/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2488 - accuracy: 0.9186\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9061 - loss: 0.2965\n", "Epoch 18/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2749 - accuracy: 0.9199\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9290 - loss: 0.2852\n", "Epoch 19/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2611 - accuracy: 0.9193\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9288 - loss: 0.2614\n", "Epoch 20/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2224 - accuracy: 0.9193\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9309 - loss: 0.2214\n", "Epoch 21/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2185 - accuracy: 0.9421\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9427 - loss: 0.2345\n", "Epoch 22/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2420 - accuracy: 0.9224\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9179 - loss: 0.2504\n", "Epoch 23/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2117 - accuracy: 0.9307\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9116 - loss: 0.2614\n", "Epoch 24/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2134 - accuracy: 0.9358\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9420 - loss: 0.2213\n", "Epoch 25/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2233 - accuracy: 0.9402\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9414 - loss: 0.2223\n", "Epoch 26/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2151 - accuracy: 0.9307\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9513 - loss: 0.1700\n", "Epoch 27/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.2009 - accuracy: 0.9421\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9464 - loss: 0.1881\n", "Epoch 28/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1893 - accuracy: 0.9390\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9527 - loss: 0.1516\n", "Epoch 29/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1961 - accuracy: 0.9415\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9351 - loss: 0.2181\n", "Epoch 30/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1643 - accuracy: 0.9555\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9263 - loss: 0.2048\n", "Epoch 31/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1892 - accuracy: 0.9441\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9471 - loss: 0.1739\n", "Epoch 32/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1589 - accuracy: 0.9580\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9500 - loss: 0.1479\n", "Epoch 33/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1582 - accuracy: 0.9593\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9524 - loss: 0.1546\n", "Epoch 34/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1444 - accuracy: 0.9574\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9458 - loss: 0.1731\n", "Epoch 35/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1503 - accuracy: 0.9561\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9478 - loss: 0.1630\n", "Epoch 36/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1485 - accuracy: 0.9549\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9449 - loss: 0.1956\n", "Epoch 37/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1624 - accuracy: 0.9479\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9632 - loss: 0.1049\n", "Epoch 38/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1483 - accuracy: 0.9606\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9583 - loss: 0.1624\n", "Epoch 39/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1401 - accuracy: 0.9593\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9594 - loss: 0.1297\n", "Epoch 40/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1369 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9492 - loss: 0.1808\n", "Epoch 41/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1401 - accuracy: 0.9574\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9674 - loss: 0.1105\n", "Epoch 42/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1526 - accuracy: 0.9574\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9570 - loss: 0.1492\n", "Epoch 43/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1262 - accuracy: 0.9650\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9490 - loss: 0.1594\n", "Epoch 44/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1481 - accuracy: 0.9619\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9455 - loss: 0.1943\n", "Epoch 45/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1159 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9625 - loss: 0.1204\n", "Epoch 46/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1202 - accuracy: 0.9682\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9726 - loss: 0.1119\n", "Epoch 47/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1216 - accuracy: 0.9676\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9699 - loss: 0.1124\n", "Epoch 48/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1354 - accuracy: 0.9657\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9571 - loss: 0.1533\n", "Epoch 49/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1233 - accuracy: 0.9695\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9654 - loss: 0.1261\n", "Epoch 50/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1466 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9631 - loss: 0.0931\n", "Epoch 51/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1297 - accuracy: 0.9612\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9644 - loss: 0.1255\n", "Epoch 52/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1217 - accuracy: 0.9657\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9533 - loss: 0.1915\n", "Epoch 53/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1005 - accuracy: 0.9739\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9569 - loss: 0.1536\n", "Epoch 54/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.1320 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9621 - loss: 0.1049\n", "Epoch 55/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1289 - accuracy: 0.9688\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9600 - loss: 0.1669\n", "Epoch 56/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1170 - accuracy: 0.9669\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9625 - loss: 0.1000\n", "Epoch 57/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1026 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9649 - loss: 0.1221\n", "Epoch 58/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0860 - accuracy: 0.9695\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9765 - loss: 0.1004\n", "Epoch 59/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1186 - accuracy: 0.9701\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9625 - loss: 0.1121\n", "Epoch 60/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1105 - accuracy: 0.9638\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9665 - loss: 0.1569\n", "Epoch 61/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1149 - accuracy: 0.9733\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9573 - loss: 0.1140\n", "Epoch 62/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1056 - accuracy: 0.9727\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9641 - loss: 0.1098\n", "Epoch 63/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1295 - accuracy: 0.9682\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9670 - loss: 0.1083\n", "Epoch 64/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1250 - accuracy: 0.9663\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9679 - loss: 0.1169\n", "Epoch 65/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1071 - accuracy: 0.9688\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9679 - loss: 0.1274\n", "Epoch 66/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1257 - accuracy: 0.9663\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9619 - loss: 0.1143\n", "Epoch 67/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0856 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9820 - loss: 0.0762\n", "Epoch 68/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0971 - accuracy: 0.9714\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9714 - loss: 0.0866\n", "Epoch 69/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0976 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9667 - loss: 0.1239\n", "Epoch 70/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0914 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9678 - loss: 0.0995\n", "Epoch 71/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1237 - accuracy: 0.9714\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0672\n", "Epoch 72/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0837 - accuracy: 0.9727\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9728 - loss: 0.0884\n", "Epoch 73/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0857 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.0835\n", "Epoch 74/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0881 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9714 - loss: 0.0934\n", "Epoch 75/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0782 - accuracy: 0.9790\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9779 - loss: 0.1212\n", "Epoch 76/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0760 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9759 - loss: 0.0924\n", "Epoch 77/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1479 - accuracy: 0.9631\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0785\n", "Epoch 78/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0786 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9685 - loss: 0.0851\n", "Epoch 79/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1087 - accuracy: 0.9695\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9618 - loss: 0.1137\n", "Epoch 80/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1014 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9792 - loss: 0.1020\n", "Epoch 81/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1142 - accuracy: 0.9663\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9775 - loss: 0.0788\n", "Epoch 82/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0923 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9776 - loss: 0.0670\n", "Epoch 83/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0820 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9563 - loss: 0.1152\n", "Epoch 84/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0893 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9821 - loss: 0.0509\n", "Epoch 85/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1339 - accuracy: 0.9676\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9719 - loss: 0.0951\n", "Epoch 86/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0833 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9641 - loss: 0.1079\n", "Epoch 87/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0780 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9648 - loss: 0.1229\n", "Epoch 88/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0935 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9736 - loss: 0.0691\n", "Epoch 89/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0898 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9742 - loss: 0.0900\n", "Epoch 90/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0911 - accuracy: 0.9727\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9813 - loss: 0.0680\n", "Epoch 91/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0625 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9793 - loss: 0.0672\n", "Epoch 92/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0563 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9744 - loss: 0.0710\n", "Epoch 93/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0951 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9779 - loss: 0.0737\n", "Epoch 94/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9784 - loss: 0.0703\n", "Epoch 95/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0662 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9869 - loss: 0.0424\n", "Epoch 96/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9776 - loss: 0.0881\n", "Epoch 97/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0724 - accuracy: 0.9803\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9713 - loss: 0.1001\n", "Epoch 98/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0984 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0472\n", "Epoch 99/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0743 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9789 - loss: 0.1111\n", "Epoch 100/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0909 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0586\n", "Epoch 101/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0688 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9805 - loss: 0.0892\n", "Epoch 102/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0929 - accuracy: 0.9739\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9857 - loss: 0.0545\n", "Epoch 103/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0740 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9765 - loss: 0.0870\n", "Epoch 104/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0888 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.0764\n", "Epoch 105/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0670 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9842 - loss: 0.0491\n", "Epoch 106/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0800 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9714 - loss: 0.1157\n", "Epoch 107/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0834 - accuracy: 0.9790\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9872 - loss: 0.0501\n", "Epoch 108/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0586 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9736 - loss: 0.1021\n", "Epoch 109/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9790\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0487\n", "Epoch 110/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0701 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9844 - loss: 0.0568\n", "Epoch 111/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0799 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9752 - loss: 0.0872\n", "Epoch 112/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0934 - accuracy: 0.9733\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9765 - loss: 0.0811\n", "Epoch 113/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0422 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9763 - loss: 0.0715\n", "Epoch 114/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1159 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9837 - loss: 0.0581\n", "Epoch 115/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9799 - loss: 0.0676\n", "Epoch 116/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1053 - accuracy: 0.9752\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9662 - loss: 0.1312\n", "Epoch 117/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0595 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9838 - loss: 0.0620\n", "Epoch 118/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1004 - accuracy: 0.9688\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9795 - loss: 0.1159\n", "Epoch 119/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0747 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.0916\n", "Epoch 120/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0942 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9832 - loss: 0.0775\n", "Epoch 121/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0587 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9797 - loss: 0.0498\n", "Epoch 122/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0854 - accuracy: 0.9714\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9726 - loss: 0.1010\n", "Epoch 123/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0796 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9843 - loss: 0.0592\n", "Epoch 124/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0968 - accuracy: 0.9746\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9820 - loss: 0.0797\n", "Epoch 125/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0523 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9747 - loss: 0.1152\n", "Epoch 126/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0764 - accuracy: 0.9771\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9671 - loss: 0.0974\n", "Epoch 127/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0784 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9861 - loss: 0.0412\n", "Epoch 128/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0448 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0762\n", "Epoch 129/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0925 - accuracy: 0.9708\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9810 - loss: 0.0423\n", "Epoch 130/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0692 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9835 - loss: 0.0628\n", "Epoch 131/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0958 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9783 - loss: 0.0911\n", "Epoch 132/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0657 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9754 - loss: 0.0995\n", "Epoch 133/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0485 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9752 - loss: 0.0862\n", "Epoch 134/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0846 - accuracy: 0.9765\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9716 - loss: 0.0907\n", "Epoch 135/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0726 - accuracy: 0.9758\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9875 - loss: 0.0420\n", "Epoch 136/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0643 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0294\n", "Epoch 137/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0925 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9842 - loss: 0.0499\n", "Epoch 138/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0575 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9791 - loss: 0.0646\n", "Epoch 139/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0546 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9830 - loss: 0.1075\n", "Epoch 140/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0565 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9739 - loss: 0.0880\n", "Epoch 141/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.1083 - accuracy: 0.9720\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9918 - loss: 0.0302\n", "Epoch 142/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0528 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9813 - loss: 0.0571\n", "Epoch 143/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0743 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0475\n", "Epoch 144/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0753 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9745 - loss: 0.1400\n", "Epoch 145/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0504 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9880 - loss: 0.0385\n", "Epoch 146/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0453 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9795 - loss: 0.0687\n", "Epoch 147/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0463 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9885 - loss: 0.0390\n", "Epoch 148/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0796 - accuracy: 0.9803\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0714\n", "Epoch 149/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0552 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9798 - loss: 0.0580\n", "Epoch 150/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0780 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9887 - loss: 0.0394\n", "Epoch 151/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0662 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9916 - loss: 0.0343\n", "Epoch 152/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0714 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9717 - loss: 0.0886\n", "Epoch 153/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0738\n", "Epoch 154/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0793 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0637\n", "Epoch 155/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9791 - loss: 0.0567\n", "Epoch 156/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0636 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9774 - loss: 0.0991\n", "Epoch 157/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0745 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9786 - loss: 0.0689\n", "Epoch 158/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0616 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0482\n", "Epoch 159/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0360 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9844 - loss: 0.0529\n", "Epoch 160/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0455 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0766\n", "Epoch 161/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0543 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9808 - loss: 0.0686\n", "Epoch 162/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0399 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9723 - loss: 0.1078\n", "Epoch 163/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0493 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9690 - loss: 0.1042\n", "Epoch 164/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0584 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9801 - loss: 0.0804\n", "Epoch 165/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0670 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9921 - loss: 0.0277\n", "Epoch 166/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0614 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9897 - loss: 0.0463\n", "Epoch 167/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0367 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9734 - loss: 0.0863\n", "Epoch 168/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0599 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9757 - loss: 0.0812\n", "Epoch 169/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0718 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9788 - loss: 0.1058\n", "Epoch 170/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0304 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9856 - loss: 0.0552\n", "Epoch 171/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0709 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0404\n", "Epoch 172/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0538 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0462\n", "Epoch 173/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0685 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9846 - loss: 0.0502\n", "Epoch 174/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0771 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9932 - loss: 0.0165\n", "Epoch 175/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0528 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9690 - loss: 0.1168\n", "Epoch 176/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0525 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9848 - loss: 0.0812\n", "Epoch 177/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0911 - accuracy: 0.9816\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0938\n", "Epoch 178/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0511 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9883 - loss: 0.0394\n", "Epoch 179/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0489 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0569\n", "Epoch 180/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0591 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0472\n", "Epoch 181/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0528 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9779 - loss: 0.0783\n", "Epoch 182/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0449 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9910 - loss: 0.0448\n", "Epoch 183/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9819 - loss: 0.0579\n", "Epoch 184/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0346 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9801 - loss: 0.0596\n", "Epoch 185/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0654 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9856 - loss: 0.0533\n", "Epoch 186/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0744 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9877 - loss: 0.0890\n", "Epoch 187/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0420 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0752\n", "Epoch 188/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0794 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9755 - loss: 0.0908\n", "Epoch 189/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0300 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9790 - loss: 0.1057\n", "Epoch 190/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0822 - accuracy: 0.9784\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9906 - loss: 0.0213\n", "Epoch 191/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0395 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9883 - loss: 0.0768\n", "Epoch 192/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0319 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0569\n", "Epoch 193/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0602 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9924 - loss: 0.0350\n", "Epoch 194/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0627 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9900 - loss: 0.0345\n", "Epoch 195/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0511 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9879 - loss: 0.0392\n", "Epoch 196/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0372 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9810 - loss: 0.1056\n", "Epoch 197/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0384 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9809 - loss: 0.0518\n", "Epoch 198/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0575 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9833 - loss: 0.0829\n", "Epoch 199/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0586 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9831 - loss: 0.0737\n", "Epoch 200/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0843 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9811 - loss: 0.0602\n", "Epoch 201/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0584 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9837 - loss: 0.0558\n", "Epoch 202/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0537 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.1004\n", "Epoch 203/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0420 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9880 - loss: 0.0430\n", "Epoch 204/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0667 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9832 - loss: 0.0618\n", "Epoch 205/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0463 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9850 - loss: 0.0480\n", "Epoch 206/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0445 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9825 - loss: 0.0667\n", "Epoch 207/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0741 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9865 - loss: 0.0468\n", "Epoch 208/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0559 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0379\n", "Epoch 209/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0523 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9934 - loss: 0.0237\n", "Epoch 210/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0396 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0247\n", "Epoch 211/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0409 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9803 - loss: 0.0800\n", "Epoch 212/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0604 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9809 - loss: 0.0913\n", "Epoch 213/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0311 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9905 - loss: 0.0268\n", "Epoch 214/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0606 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9950 - loss: 0.0224\n", "Epoch 215/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0586 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9842 - loss: 0.0853\n", "Epoch 216/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0723 - accuracy: 0.9777\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0475\n", "Epoch 217/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0359 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0626\n", "Epoch 218/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0748 - accuracy: 0.9809\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0343\n", "Epoch 219/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0530 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9887 - loss: 0.0497\n", "Epoch 220/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0674 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9936 - loss: 0.0257\n", "Epoch 221/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0293 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9953 - loss: 0.0221\n", "Epoch 222/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0401 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9825 - loss: 0.0648\n", "Epoch 223/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0420 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9904 - loss: 0.0262\n", "Epoch 224/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0438 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9875 - loss: 0.0401\n", "Epoch 225/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0472 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9906 - loss: 0.0523\n", "Epoch 226/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0799 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9924 - loss: 0.0175\n", "Epoch 227/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0532 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.0624\n", "Epoch 228/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0698 - accuracy: 0.9828\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9874 - loss: 0.0437\n", "Epoch 229/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0452 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9893 - loss: 0.0441\n", "Epoch 230/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0527 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9898 - loss: 0.0422\n", "Epoch 231/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0337 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9826 - loss: 0.0511\n", "Epoch 232/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0469 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9837 - loss: 0.0645\n", "Epoch 233/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0355 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9892 - loss: 0.0389\n", "Epoch 234/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0281 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9828 - loss: 0.0621\n", "Epoch 235/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0309 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9914 - loss: 0.0248\n", "Epoch 236/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0817 - accuracy: 0.9803\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9876 - loss: 0.0304\n", "Epoch 237/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0530 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9879 - loss: 0.0423\n", "Epoch 238/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0437 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9869 - loss: 0.0492\n", "Epoch 239/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0363 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9779 - loss: 0.0580\n", "Epoch 240/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0475 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9851 - loss: 0.0473\n", "Epoch 241/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0234 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0531\n", "Epoch 242/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0483 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9885 - loss: 0.0328\n", "Epoch 243/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0543 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9940 - loss: 0.0214\n", "Epoch 244/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0356 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9826 - loss: 0.0636\n", "Epoch 245/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0577 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9898 - loss: 0.0216\n", "Epoch 246/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0643 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9793 - loss: 0.0660\n", "Epoch 247/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0518 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0356\n", "Epoch 248/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0553 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9913 - loss: 0.0256\n", "Epoch 249/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0447 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0290\n", "Epoch 250/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0438 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9849 - loss: 0.0438\n", "Epoch 251/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0654 - accuracy: 0.9847\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9896 - loss: 0.0583\n", "Epoch 252/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0600 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9806 - loss: 0.1203\n", "Epoch 253/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0378 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9844 - loss: 0.0670\n", "Epoch 254/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0407 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9936 - loss: 0.0278\n", "Epoch 255/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0645 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9867 - loss: 0.0302\n", "Epoch 256/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0378 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9836 - loss: 0.0429\n", "Epoch 257/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0497 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0280\n", "Epoch 258/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0454 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9894 - loss: 0.0426\n", "Epoch 259/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0423 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0653\n", "Epoch 260/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0610 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9887 - loss: 0.0462\n", "Epoch 261/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0366 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9845 - loss: 0.0592\n", "Epoch 262/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0396 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9807 - loss: 0.0897\n", "Epoch 263/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0318 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0245\n", "Epoch 264/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0552 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0552\n", "Epoch 265/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0317 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0201\n", "Epoch 266/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0414 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9858 - loss: 0.0557\n", "Epoch 267/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0493 - accuracy: 0.9822\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9916 - loss: 0.0496\n", "Epoch 268/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9894 - loss: 0.0536\n", "Epoch 269/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0695 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9910 - loss: 0.0252\n", "Epoch 270/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0325 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9882 - loss: 0.0514\n", "Epoch 271/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0353 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9930 - loss: 0.0374\n", "Epoch 272/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0782 - accuracy: 0.9797\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0146\n", "Epoch 273/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0462 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.1504\n", "Epoch 274/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0401 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0313\n", "Epoch 275/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0284 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9897 - loss: 0.0372\n", "Epoch 276/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0403 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9886 - loss: 0.0327\n", "Epoch 277/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0545 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9949 - loss: 0.0226\n", "Epoch 278/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0514 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9940 - loss: 0.0254\n", "Epoch 279/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0308 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0423\n", "Epoch 280/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0459 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9912 - loss: 0.0498\n", "Epoch 281/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0490 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9861 - loss: 0.0585\n", "Epoch 282/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0271 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0725\n", "Epoch 283/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0509 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9821 - loss: 0.0624\n", "Epoch 284/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0570 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9941 - loss: 0.0338\n", "Epoch 285/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0388 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9914 - loss: 0.0272\n", "Epoch 286/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0518 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9835 - loss: 0.0731\n", "Epoch 287/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9831 - loss: 0.0728\n", "Epoch 288/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0302 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0281\n", "Epoch 289/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0437 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9833 - loss: 0.0592\n", "Epoch 290/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0414 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9940 - loss: 0.0266\n", "Epoch 291/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0394 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9848 - loss: 0.0428\n", "Epoch 292/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0302 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0495\n", "Epoch 293/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0554 - accuracy: 0.9860\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9879 - loss: 0.0449\n", "Epoch 294/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0884 - accuracy: 0.9835\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9849 - loss: 0.0592\n", "Epoch 295/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0416 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9890 - loss: 0.0433\n", "Epoch 296/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0508 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9951 - loss: 0.0233\n", "Epoch 297/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0648 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9896 - loss: 0.0334\n", "Epoch 298/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0336 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9915 - loss: 0.0258\n", "Epoch 299/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0473 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9851 - loss: 0.0627\n", "Epoch 300/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0524 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0190\n", "Epoch 301/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0460 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9763 - loss: 0.0931\n", "Epoch 302/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0441 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9829 - loss: 0.0692\n", "Epoch 303/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0212 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9852 - loss: 0.0356\n", "Epoch 304/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0462 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0393\n", "Epoch 305/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0221 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9847 - loss: 0.0548\n", "Epoch 306/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0631 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9793 - loss: 0.0820\n", "Epoch 307/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0362 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9917 - loss: 0.0270\n", "Epoch 308/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0692 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9942 - loss: 0.0189\n", "Epoch 309/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0445 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9962 - loss: 0.0088\n", "Epoch 310/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0341 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9910 - loss: 0.0358\n", "Epoch 311/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0399 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9855 - loss: 0.0663\n", "Epoch 312/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0213 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9912 - loss: 0.0225\n", "Epoch 313/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0602 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9910 - loss: 0.0406\n", "Epoch 314/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0537 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9914 - loss: 0.0512\n", "Epoch 315/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0383 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9893 - loss: 0.0391\n", "Epoch 316/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0470 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9872 - loss: 0.0396\n", "Epoch 317/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0328 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9836 - loss: 0.0535\n", "Epoch 318/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0477 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9931 - loss: 0.0408\n", "Epoch 319/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0467 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9823 - loss: 0.0658\n", "Epoch 320/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0295 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9890 - loss: 0.0477\n", "Epoch 321/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0491 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9913 - loss: 0.0209\n", "Epoch 322/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0249 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9883 - loss: 0.0411\n", "Epoch 323/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0489 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9855 - loss: 0.0484\n", "Epoch 324/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0267 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0400\n", "Epoch 325/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0558 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9891 - loss: 0.0526\n", "Epoch 326/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0283 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9801 - loss: 0.0741\n", "Epoch 327/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0409 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0256\n", "Epoch 328/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0260 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0247\n", "Epoch 329/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0492 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9946 - loss: 0.0142\n", "Epoch 330/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0422 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0523\n", "Epoch 331/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0223 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9911 - loss: 0.0438\n", "Epoch 332/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0308 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9948 - loss: 0.0277\n", "Epoch 333/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0409 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9970 - loss: 0.0081\n", "Epoch 334/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0449 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9870 - loss: 0.0370\n", "Epoch 335/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0349 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9846 - loss: 0.0421\n", "Epoch 336/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0550\n", "Epoch 337/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0338 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9904 - loss: 0.0579\n", "Epoch 338/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0432 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0451\n", "Epoch 339/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0527 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9934 - loss: 0.0334\n", "Epoch 340/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9819 - loss: 0.0630\n", "Epoch 341/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0243 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9859 - loss: 0.0384\n", "Epoch 342/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0317 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9863 - loss: 0.0580\n", "Epoch 343/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0257 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9910 - loss: 0.0355\n", "Epoch 344/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0401 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9958 - loss: 0.0194\n", "Epoch 345/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0331 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9874 - loss: 0.0323\n", "Epoch 346/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0464 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9907 - loss: 0.0267\n", "Epoch 347/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0348 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0634\n", "Epoch 348/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0445 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0474\n", "Epoch 349/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0292 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9900 - loss: 0.0492\n", "Epoch 350/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0372 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9891 - loss: 0.0374\n", "Epoch 351/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0346 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9838 - loss: 0.0468\n", "Epoch 352/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9791 - loss: 0.0854\n", "Epoch 353/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0299 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0197\n", "Epoch 354/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0368 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9854 - loss: 0.0662\n", "Epoch 355/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0613 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0387\n", "Epoch 356/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0530 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9853 - loss: 0.0491\n", "Epoch 357/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0347 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0334\n", "Epoch 358/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0418 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0486\n", "Epoch 359/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0436 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0270\n", "Epoch 360/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0699 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9880 - loss: 0.0321\n", "Epoch 361/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0310 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9844 - loss: 0.0577\n", "Epoch 362/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0313 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9908 - loss: 0.0532\n", "Epoch 363/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0318 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9816 - loss: 0.1538\n", "Epoch 364/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0427 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9897 - loss: 0.0727\n", "Epoch 365/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0260 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9933 - loss: 0.0249\n", "Epoch 366/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0165 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9843 - loss: 0.0523\n", "Epoch 367/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0359 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9969 - loss: 0.0272\n", "Epoch 368/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0111 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9898 - loss: 0.0320\n", "Epoch 369/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0527 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9926 - loss: 0.0565\n", "Epoch 370/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0389 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9940 - loss: 0.0258\n", "Epoch 371/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9949 - loss: 0.0194\n", "Epoch 372/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9912 - loss: 0.0262\n", "Epoch 373/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0341 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9915 - loss: 0.0287\n", "Epoch 374/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0350 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9941 - loss: 0.0228\n", "Epoch 375/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0594 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9952 - loss: 0.0169\n", "Epoch 376/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0468 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0326\n", "Epoch 377/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0485 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9905 - loss: 0.0493\n", "Epoch 378/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9905 - loss: 0.0338\n", "Epoch 379/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0298 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9899 - loss: 0.0261\n", "Epoch 380/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0310 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9879 - loss: 0.0555\n", "Epoch 381/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0349 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9908 - loss: 0.0290\n", "Epoch 382/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0327 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9932 - loss: 0.0283\n", "Epoch 383/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0218 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0360\n", "Epoch 384/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0386 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9870 - loss: 0.0545\n", "Epoch 385/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0416 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9922 - loss: 0.0397\n", "Epoch 386/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0309 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0222\n", "Epoch 387/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0357 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9986 - loss: 0.0194\n", "Epoch 388/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0252 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9864 - loss: 0.0482\n", "Epoch 389/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0409 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9894 - loss: 0.0449\n", "Epoch 390/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0171 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9919 - loss: 0.0191\n", "Epoch 391/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0196 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9978 - loss: 0.0086\n", "Epoch 392/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0364 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9946 - loss: 0.0604\n", "Epoch 393/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0273 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9826 - loss: 0.0802\n", "Epoch 394/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0492 - accuracy: 0.9873\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9929 - loss: 0.0291\n", "Epoch 395/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0267 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9928 - loss: 0.0257\n", "Epoch 396/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0134 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9941 - loss: 0.0271\n", "Epoch 397/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0630 - accuracy: 0.9854\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9897 - loss: 0.0585\n", "Epoch 398/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0431 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9913 - loss: 0.0463\n", "Epoch 399/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0210 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9957 - loss: 0.0137\n", "Epoch 400/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0473 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9982 - loss: 0.0102\n", "Epoch 401/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0495 - accuracy: 0.9866\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 10ms/step - accuracy: 0.9945 - loss: 0.0195\n", "Epoch 402/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0350 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9959 - loss: 0.0181\n", "Epoch 403/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0232 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9890 - loss: 0.0346\n", "Epoch 404/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0362 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9937 - loss: 0.0275\n", "Epoch 405/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0329 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9949 - loss: 0.0469\n", "Epoch 406/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0199 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9792 - loss: 0.0668\n", "Epoch 407/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0474 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 10ms/step - accuracy: 0.9903 - loss: 0.0355\n", "Epoch 408/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0154 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 11ms/step - accuracy: 0.9934 - loss: 0.0222\n", "Epoch 409/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0448 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9951 - loss: 0.0323\n", "Epoch 410/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0293 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9952 - loss: 0.0245\n", "Epoch 411/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0434 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9887 - loss: 0.0478\n", "Epoch 412/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0102 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9977 - loss: 0.0135\n", "Epoch 413/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0151 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9914 - loss: 0.0486\n", "Epoch 414/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0388 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9945 - loss: 0.0316\n", "Epoch 415/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0177 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9959 - loss: 0.0134\n", "Epoch 416/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0182 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.9910 - loss: 0.0336\n", "Epoch 417/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0548 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9934 - loss: 0.0210\n", "Epoch 418/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0473 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - accuracy: 0.9967 - loss: 0.0182\n", "Epoch 419/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0227 - accuracy: 0.9975\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9982 - loss: 0.0168\n", "Epoch 420/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0466 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9976 - loss: 0.0143\n", "Epoch 421/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0452 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9917 - loss: 0.0328\n", "Epoch 422/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0263 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9913 - loss: 0.0214\n", "Epoch 423/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0311 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0202\n", "Epoch 424/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0385 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0375\n", "Epoch 425/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0403 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0233\n", "Epoch 426/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0312 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0286\n", "Epoch 427/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0357 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9867 - loss: 0.0736\n", "Epoch 428/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0513 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0462\n", "Epoch 429/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0247 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9840 - loss: 0.0531\n", "Epoch 430/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0550 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9919 - loss: 0.0302\n", "Epoch 431/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0380 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9859 - loss: 0.0687\n", "Epoch 432/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0398 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9964 - loss: 0.0111\n", "Epoch 433/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0334 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9970 - loss: 0.0245\n", "Epoch 434/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0249 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9824 - loss: 0.0684\n", "Epoch 435/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0397 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0252\n", "Epoch 436/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0403 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9862 - loss: 0.0671\n", "Epoch 437/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0414 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9867 - loss: 0.0521\n", "Epoch 438/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0263 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0235\n", "Epoch 439/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0118 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9868 - loss: 0.0337\n", "Epoch 440/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0543 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9894 - loss: 0.0301\n", "Epoch 441/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0215 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9958 - loss: 0.0258\n", "Epoch 442/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0333 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9961 - loss: 0.0189\n", "Epoch 443/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0300 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9914 - loss: 0.0170\n", "Epoch 444/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0611 - accuracy: 0.9841\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9947 - loss: 0.0296\n", "Epoch 445/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0302 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9928 - loss: 0.0274\n", "Epoch 446/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0319 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9902 - loss: 0.0442\n", "Epoch 447/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0290 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9871 - loss: 0.0442\n", "Epoch 448/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0395 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9962 - loss: 0.0290\n", "Epoch 449/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0272 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9918 - loss: 0.0232\n", "Epoch 450/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0285 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9957 - loss: 0.0115\n", "Epoch 451/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0281 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9823 - loss: 0.0913\n", "Epoch 452/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0159 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9942 - loss: 0.0357\n", "Epoch 453/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0502 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9978 - loss: 0.0156\n", "Epoch 454/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0357 - accuracy: 0.9917\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9870 - loss: 0.0515\n", "Epoch 455/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0495 - accuracy: 0.9879\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9909 - loss: 0.0351\n", "Epoch 456/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0277 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9925 - loss: 0.0302\n", "Epoch 457/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0246 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9921 - loss: 0.0288\n", "Epoch 458/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0316 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9945 - loss: 0.0135\n", "Epoch 459/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0291 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9877 - loss: 0.0352\n", "Epoch 460/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0196 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9918 - loss: 0.0390\n", "Epoch 461/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0203 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9895 - loss: 0.0517\n", "Epoch 462/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0309 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9797 - loss: 0.0902\n", "Epoch 463/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0520 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9912 - loss: 0.0169\n", "Epoch 464/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9933 - loss: 0.0224\n", "Epoch 465/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0351 - accuracy: 0.9905\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9939 - loss: 0.0285\n", "Epoch 466/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0545 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9877 - loss: 0.0489\n", "Epoch 467/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0185 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9931 - loss: 0.0314\n", "Epoch 468/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0237 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9967 - loss: 0.0072\n", "Epoch 469/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0194 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9922 - loss: 0.0319\n", "Epoch 470/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0558 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9953 - loss: 0.0118\n", "Epoch 471/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0372 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9872 - loss: 0.0471\n", "Epoch 472/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0345 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9967 - loss: 0.0234\n", "Epoch 473/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0134 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9917 - loss: 0.0561\n", "Epoch 474/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0427 - accuracy: 0.9892\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9876 - loss: 0.0377\n", "Epoch 475/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0215 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9977 - loss: 0.0083\n", "Epoch 476/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0157 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9960 - loss: 0.0137\n", "Epoch 477/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0237 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9901 - loss: 0.0569\n", "Epoch 478/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0339 - accuracy: 0.9924\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0388\n", "Epoch 479/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9936\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9875 - loss: 0.0265\n", "Epoch 480/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0227 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9943 - loss: 0.0349\n", "Epoch 481/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0291 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9898 - loss: 0.0479\n", "Epoch 482/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0192 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9930 - loss: 0.0214\n", "Epoch 483/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0289 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9901 - loss: 0.0361\n", "Epoch 484/500\n", - "394/394 [==============================] - 2s 4ms/step - loss: 0.0395 - accuracy: 0.9886\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9903 - loss: 0.0253\n", "Epoch 485/500\n", - "394/394 [==============================] - 1s 4ms/step - loss: 0.0155 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9927 - loss: 0.0188\n", "Epoch 486/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0290 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9971 - loss: 0.0069\n", "Epoch 487/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0114 - accuracy: 0.9968\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9968 - loss: 0.0189\n", "Epoch 488/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0121 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9874 - loss: 0.0624\n", "Epoch 489/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0211 - accuracy: 0.9962\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9934 - loss: 0.0221\n", "Epoch 490/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0374 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9964 - loss: 0.0097\n", "Epoch 491/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0250 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9890 - loss: 0.0315\n", "Epoch 492/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0326 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9967 - loss: 0.0207\n", "Epoch 493/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0215 - accuracy: 0.9943\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9935 - loss: 0.0615\n", "Epoch 494/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0321 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9925 - loss: 0.0141\n", "Epoch 495/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0136 - accuracy: 0.9955\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9893 - loss: 0.0557\n", "Epoch 496/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0336 - accuracy: 0.9930\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9929 - loss: 0.0229\n", "Epoch 497/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0310 - accuracy: 0.9949\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9878 - loss: 0.0459\n", "Epoch 498/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0300 - accuracy: 0.9898\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9938 - loss: 0.0249\n", "Epoch 499/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0274 - accuracy: 0.9911\n", + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9929 - loss: 0.0390\n", "Epoch 500/500\n", - "394/394 [==============================] - 1s 3ms/step - loss: 0.0494 - accuracy: 0.9892\n" + "\u001b[1m325/325\u001b[0m \u001b[32mâ”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”â”\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9964 - loss: 0.0116\n" ] } ], @@ -1279,7 +1370,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFFklEQVR4nO3dd3xUVdoH8N/09IQUEkJHigQhSBVBRUVRXOwrll1BV311wYa6r7p2d8V3XV1bLLsW1nV37WLBgiCgIr0pRYpUgSQQSK8zc98/Jvfm3Dv3ztyZzGQmye/7+fgxM3Nn5sxNyH3ynOc8xyJJkgQiIiKiTsga6wEQERERxQoDISIiIuq0GAgRERFRp8VAiIiIiDotBkJERETUaTEQIiIiok6LgRARERF1WgyEiIiIqNNiIERERESdFgMhIupQ9uzZA4vFgrlz54b83CVLlsBisWDJkiUBj5s7dy4sFgv27NkT1hiJKH4wECIiIqJOi4EQERERdVoMhIiIiKjTYiBERBH10EMPwWKxYPv27fjNb36D9PR05OTk4P7774ckSdi/fz8uuOACpKWlIS8vD08++aTfa5SWluJ3v/sdcnNzkZCQgMLCQvzzn//0O668vBwzZsxAeno6MjIyMH36dJSXl+uO66effsKll16KzMxMJCQkYNSoUfj4448j+tlfeOEFDBkyBC6XC/n5+Zg5c6bfeHbs2IFLLrkEeXl5SEhIQI8ePXD55ZejoqJCOearr77ChAkTkJGRgZSUFAwaNAj33ntvRMdKRD72WA+AiDqmadOmYfDgwXj88ccxf/58/OlPf0JmZiZefvllnHHGGfi///s//Pvf/8add96J0aNH49RTTwUA1NXVYeLEidi5cydmzZqFvn374t1338WMGTNQXl6OW2+9FQAgSRIuuOACfPfdd7jxxhsxePBgfPjhh5g+fbrfWDZv3ozx48eje/fuuPvuu5GcnIx33nkHF154Id5//31cdNFFrf68Dz30EB5++GFMmjQJN910E7Zt24YXX3wRq1evxrJly+BwONDY2IjJkyejoaEBN998M/Ly8nDgwAF8+umnKC8vR3p6OjZv3oxf/epXGDZsGB555BG4XC7s3LkTy5Yta/UYiUiHREQUQQ8++KAEQLrhhhuU+9xut9SjRw/JYrFIjz/+uHL/sWPHpMTERGn69OnKfU8//bQEQHrzzTeV+xobG6Vx48ZJKSkpUmVlpSRJkjRv3jwJgPSXv/xF9T6nnHKKBEB6/fXXlfvPPPNMaejQoVJ9fb1yn9frlU4++WRpwIAByn2LFy+WAEiLFy8O+Blff/11CYC0e/duSZIkqbS0VHI6ndLZZ58teTwe5bjnn39eAiC99tprkiRJ0vr16yUA0rvvvmv42n/7298kANLhw4cDjoGIIoNTY0QUFdddd53ytc1mw6hRoyBJEn73u98p92dkZGDQoEHYtWuXct9nn32GvLw8XHHFFcp9DocDt9xyC6qrq7F06VLlOLvdjptuukn1PjfffLNqHEePHsXXX3+Nyy67DFVVVThy5AiOHDmCsrIyTJ48GTt27MCBAwda9VkXLlyIxsZG3HbbbbBaW36tXn/99UhLS8P8+fMBAOnp6QCAL7/8ErW1tbqvlZGRAQD46KOP4PV6WzUuIgqOgRARRUWvXr1Ut9PT05GQkIDs7Gy/+48dO6bc3rt3LwYMGKAKKABg8ODByuPy/7t164aUlBTVcYMGDVLd3rlzJyRJwv3334+cnBzVfw8++CAAX01Sa8hj0r630+lEv379lMf79u2L2bNn45VXXkF2djYmT56MoqIiVX3QtGnTMH78eFx33XXIzc3F5ZdfjnfeeYdBEVGUsEaIiKLCZrOZug/w1ftEixxA3HnnnZg8ebLuMf3794/a+2s9+eSTmDFjBj766CMsWLAAt9xyC+bMmYMVK1agR48eSExMxDfffIPFixdj/vz5+OKLL/D222/jjDPOwIIFCwzPIRGFhxkhIoorvXv3xo4dO/wyID/99JPyuPz/Q4cOobq6WnXctm3bVLf79esHwDe9NmnSJN3/UlNTWz1mvfdubGzE7t27lcdlQ4cOxX333YdvvvkG3377LQ4cOICXXnpJedxqteLMM8/EU089hS1btuDPf/4zvv76ayxevLhV4yQifwyEiCiuTJkyBcXFxXj77beV+9xuN5577jmkpKTgtNNOU45zu9148cUXleM8Hg+ee+451et17doVEydOxMsvv4xDhw75vd/hw4dbPeZJkybB6XTi2WefVWW3Xn31VVRUVOC8884DAFRWVsLtdqueO3ToUFitVjQ0NADw1TRpDR8+HACUY4gocjg1RkRx5YYbbsDLL7+MGTNmYO3atejTpw/ee+89LFu2DE8//bSSvZk6dSrGjx+Pu+++G3v27EFBQQE++OADVb2NrKioCBMmTMDQoUNx/fXXo1+/figpKcHy5cvxyy+/YOPGja0ac05ODu655x48/PDDOOecc3D++edj27ZteOGFFzB69Gj85je/AQB8/fXXmDVrFn79619j4MCBcLvd+Ne//gWbzYZLLrkEAPDII4/gm2++wXnnnYfevXujtLQUL7zwAnr06IEJEya0apxE5I+BEBHFlcTERCxZsgR33303/vnPf6KyshKDBg3C66+/jhkzZijHWa1WfPzxx7jtttvw5ptvwmKx4Pzzz8eTTz6JE088UfWaBQUFWLNmDR5++GHMnTsXZWVl6Nq1K0488UQ88MADERn3Qw89hJycHDz//PO4/fbbkZmZiRtuuAGPPfYYHA4HAKCwsBCTJ0/GJ598ggMHDiApKQmFhYX4/PPPcdJJJwEAzj//fOzZswevvfYajhw5guzsbJx22ml4+OGHlVVnRBQ5FimaVYpEREREcYw1QkRERNRpMRAiIiKiTouBEBEREXVaDISIiIio02IgRERERJ0WAyEiIiLqtNhHKACv14uDBw8iNTUVFosl1sMhIiIiEyRJQlVVFfLz8/02cNZiIBTAwYMH0bNnz1gPg4iIiMKwf/9+9OjRI+AxDIQCkFv579+/H2lpaTEeDREREZlRWVmJnj17mtpQmYFQAPJ0WFpaGgMhIiKidsZMWQuLpYmIiKjTYiBEREREnRYDISIiIuq0WCMUAR6PB01NTbEeRrvkcDhgs9liPQwiIuqkGAi1giRJKC4uRnl5eayH0q5lZGQgLy+PvZqIiKjNMRBqBTkI6tq1K5KSknghD5EkSaitrUVpaSkAoFu3bjEeERERdTYMhMLk8XiUICgrKyvWw2m3EhMTAQClpaXo2rUrp8mIiKhNsVg6THJNUFJSUoxH0v7J55B1VkRE1NYYCLUSp8Naj+eQiIhihYEQERERdVoMhKhV+vTpg6effjrWwyAiIgoLi6U7oYkTJ2L48OERCWBWr16N5OTk1g+KiIgoBhgIxYAkSXB7JXi9Epx2a9zVyEiSBI/HA7s9+I9HTk5OG4yIiIgoOjg1FgNeScLWQ5XYVlIFSWrb954xYwaWLl2KZ555BhaLBRaLBXPnzoXFYsHnn3+OkSNHwuVy4bvvvsPPP/+MCy64ALm5uUhJScHo0aOxcOFC1etpp8YsFgteeeUVXHTRRUhKSsKAAQPw8ccft+2HJCIiMomBUARJkoTaRnfQ/+qaPKhv/q+6ocnUc4L9J5mMqJ555hmMGzcO119/PQ4dOoRDhw6hZ8+eAIC7774bjz/+OLZu3Yphw4ahuroaU6ZMwaJFi7B+/Xqcc845mDp1Kvbt2xfwPR5++GFcdtll+OGHHzBlyhRcddVVOHr0aKvPLxERUaRxaiyC6po8KHjgy5i895ZHJiPJGfzbmZ6eDqfTiaSkJOTl5QEAfvrpJwDAI488grPOOks5NjMzE4WFhcrtRx99FB9++CE+/vhjzJo1y/A9ZsyYgSuuuAIA8Nhjj+HZZ5/FqlWrcM4554T12YiIiKKFGSFSjBo1SnW7uroad955JwYPHoyMjAykpKRg69atQTNCw4YNU75OTk5GWlqaso0GERFRPGFGKIISHTZseWSyqWO3FVehyePFcTnJSDSRyTHz3q2lXf1155134quvvsJf//pX9O/fH4mJibj00kvR2NgY8HUcDofqtsVigdfrbfX4iIiIIo2BUARZLBZT01MAkOi0wea2IMFhN/2cSHE6nfB4PEGPW7ZsGWbMmIGLLroIgC9DtGfPniiPjoiIqO1wakxHUVERCgoKMHr06Ki9h7V5yby3rZeNwbfSa+XKldizZw+OHDlimK0ZMGAAPvjgA2zYsAEbN27ElVdeycwOERF1KAyEdMycORNbtmzB6tWro/YeciAUgzgId955J2w2GwoKCpCTk2NY8/PUU0+hS5cuOPnkkzF16lRMnjwZI0aMaOPREhERRY9FMrvuuhOqrKxEeno6KioqkJaWpnqsvr4eu3fvRt++fZGQkBDya+86XI3qBjd6ZSYhI8kZqSG3S609l0RERKJA128tZoRipGVqLMYDISIi6sQYCMWIvKtGLGqEiIiIyIeBUIzEsliaiIiIfBgIxYi1OSPEOIiIiCh2GAi1Uri15swItWC9PhERxQoDoTDJ3ZNra2vDer6FxdIK+RxqO1ITERFFGztLh8lmsyEjI0PZQyspKUkJbszwuBsguRvRWC+hvt788zoSSZJQW1uL0tJSZGRkwGZr/TYhREREoWAg1Ary7u3hbCha3eBGeW0Tqp021B/r3H2EMjIylHNJRETUlhgItYLFYkG3bt3QtWtXNDU1hfTc+T8cxFOLt2Ncvyz86aJBURph/HM4HMwEERFRzDAQigCbzRbyxdzudOFAlQeHajzspkxERBQjLJaOkQSHL3Cqawy+CzwRERFFBwOhGEmUA6Em7uZOREQUKwyEYiTR6QuE6puYESIiIooVBkIxksipMSIiophjIBQjSo0QM0JEREQxw0AoRuSpMQZCREREscNAKEZcdt+pb3R7udcWERFRjDAQihF5agwAGtxcOUZERBQLDIRiRM4IAVw5RkREFCsMhGLEYbPCZvVttsqMEBERUWwwEIqhhOasEDNCREREscFAKIZcDrmpIjNCREREscBAKIbkjFCDmxkhIiKiWGAgFEPMCBEREcUWA6EYcjEjREREFFMMhGIogRkhIiKimGIgFEMurhojIiKKKQZCMSRnhNhHiIiIKDYYCMUQM0JERESxxUAohpgRIiIiii0GQjGU4GBGiIiIKJYYCMWQy96cEWIgREREFBMMhGJIzghxaoyIiCg2GAjFkJwR4tQYERFRbHT4QOjTTz/FoEGDMGDAALzyyiuxHo4KM0JERESxZY/1AKLJ7XZj9uzZWLx4MdLT0zFy5EhcdNFFyMrKivXQAIidpZkRIiIiioUOnRFatWoVhgwZgu7duyMlJQXnnnsuFixYEOthKVr6CDEjREREFAtxHQh98803mDp1KvLz82GxWDBv3jy/Y4qKitCnTx8kJCRg7NixWLVqlfLYwYMH0b17d+V29+7dceDAgbYYuikupY8QM0JERESxENeBUE1NDQoLC1FUVKT7+Ntvv43Zs2fjwQcfxLp161BYWIjJkyejtLS0jUcaHmaEiIiIYiuuA6Fzzz0Xf/rTn3DRRRfpPv7UU0/h+uuvxzXXXIOCggK89NJLSEpKwmuvvQYAyM/PV2WADhw4gPz8fMP3a2hoQGVlpeq/aEpgRoiIiCim4joQCqSxsRFr167FpEmTlPusVismTZqE5cuXAwDGjBmDTZs24cCBA6iursbnn3+OyZMnG77mnDlzkJ6ervzXs2fPqH4GZoSIiIhiq90GQkeOHIHH40Fubq7q/tzcXBQXFwMA7HY7nnzySZx++ukYPnw47rjjjoArxu655x5UVFQo/+3fvz+qn0FZNcaMEBERUUx06OXzAHD++efj/PPPN3Wsy+WCy+WK8ohapLh8p7+q3t1m70lEREQt2m1GKDs7GzabDSUlJar7S0pKkJeXF6NRhaZLshMAUF7bCEmSYjwaIiKizqfdBkJOpxMjR47EokWLlPu8Xi8WLVqEcePGxXBk5nVJcgAAmjwSaho5PUZERNTW4npqrLq6Gjt37lRu7969Gxs2bEBmZiZ69eqF2bNnY/r06Rg1ahTGjBmDp59+GjU1NbjmmmtiOGrzEh02uOxWNLi9OFbTqEyVERERUduI6yvvmjVrcPrppyu3Z8+eDQCYPn065s6di2nTpuHw4cN44IEHUFxcjOHDh+OLL77wK6COVxaLBV2SnCiurMex2kb0zEyK9ZCIiIg6lbgOhCZOnBi0dmbWrFmYNWtWRN+3qKgIRUVF8HiiP12VkeRoDoSaov5eREREpNZua4SiaebMmdiyZQtWr14d9ffqktRSME1ERERti4FQjHVJ9hVMH6thIERERNTWGAjFWEZzRohTY0RERG2PgVCMZXJqjIiIKGYYCMVYRnMvIWaEiIiI2h4DoRjrokyNMSNERETU1hgI6SgqKkJBQQFGjx4d9fdSiqUZCBEREbU5BkI62nL5vFIsXcOpMSIiorbGQCjG2EeIiIgodhgIxZi8aqym0YNGtzfGoyEiIupcGAjFWGqCHVaL72tmhYiIiNoWA6EYs1otbKpIREQUIwyE4kBLLyFmhIiIiNoSA6E4oPQS4n5jREREbYqBkI627CMEiE0VOTVGRETUlhgI6WjLPkIA0IVTY0RERDHBQCgOdElmLyEiIqJYYCAUB7jxKhERUWwwEIoDXVMTAADFFfUxHgkREVHnwkAoDvTOSgIA7CmrifFIiIiIOhcGQnFADoQOltdxmw0iIqI2xEAoDuSkuJDktMErAb8cq431cIiIiDoNBkJxwGKxoHdWMgBgbxkDISIiorbCQChO9M5knRAREVFbYyCko607SwMtdULMCBEREbUdBkI62rqzNAB075IIADhUUddm70lERNTZMRCKE3lp7CVERETU1hgIxYn8DF9G6CADISIiojbDQChO5KX7MkJHqhvYS4iIiKiNMBCKE1nJTjhtVkgSUFLJrBAREVFbYCAUJywWi5IVKmYgRERE1CYYCMURORA6WM6VY0RERG2BgVAcyU/nyjEiIqK2xEAojuSkugD4CqaJiIgo+hgIxZHsFDkQaozxSIiIiDoHBkJxJCuFGSEiIqK2xEBIRyz2GgOA7BQnAGaEiIiI2goDIR2x2GsMEKfGmBEiIiJqCwyE4ogcCB2taYTXK8V4NERERB0fA6E4kpnsmxrzeCWU1zXFeDREREQdHwOhOOK0W5Ge6AAAlHF6jIiIKOoYCMWZrOaC6cMMhIiIiKKOgVCckeuEnlu0E5LEOiEiIqJoYiAUZ84ZkgcAWL6rDN/sOBLj0RAREXVsDITizLUT+mLioBwAwNZDlTEeDRERUcfGQCgOjejVBQCwo6Q6xiMhIiLq2BgIxaH+XVMAADtLq2I8EiIioo6NgVAcGqAEQtUsmCYiIooiBkJxqHdWMuxWC2oaPThUUR/r4RAREXVYDITikNNuRZ/sZADAjlLWCREREUULAyEdsdp9XtQ/p2V6jIiIiKKDgZCOWO0+LxqQy4JpIiKiaGMgFKfklWM7SqpRVt2ABrcnxiMiIiLqeBgIxakBXVMBAGv2HsPIPy3EhUXfx3hEREREHQ8DoTjVLydZdXvroUq4Pd4YjYaIiKhjYiAUpxIcNqQnOlT3cSk9ERFRZDEQimOZyU7V7X1Ha2M0EiIioo6JgVAc65KkzgjtLWMgREREFEkMhOJYZrJLdXvv0ZoYjYSIiKhjYiAUxzKT1RmhfcwIERERRRQDoTjWRVMjtPVQJTdhJSIiiiAGQnEsM0kdCO0pq+WWG0RERBHEQCiOiRmhBIfvW7VgS0mshkNERNThMBCKY2JG6OIRPQAAq/ccjdVwiIiIOhwGQnGsi1AsfUJ+OgCgrLoxVsMhIiLqcBgIxTGHreXbc1zzlhtl1Q2xGg4REVGHY4/1AMjY8XlpOC4nGdkpLuRnJAIAymoaIUkSLBZLjEdHRETU/jEQimNOuxULbj8NVgtQ1+QBADS4vahp9CDFxW8dERFRa3FqTEdRUREKCgowevToWA8FNqsFFosFSU47Eh02AMBR1gkRERFFBAMhHTNnzsSWLVuwevXqWA9FRd6E9UgN64SIiIgigYFQO5Kd4guEmBEiIiKKDAZC7UhWim8T1jJmhIiIiCKCgVA7Ik+N/ePb3Zj4xGJsL6mK8YiIiIjaNwZC7UhW89TYztJq7Cmrxe//vS7GIyIiImrfGAi1I93SElS3uQErERFR6zAQakcG5qX63bevrDYGIyEiIuoYGAi1I4Ny/QOhHw6Ut/1AiIiIOggGQu2IvGpMdKSKK8iIiIjCxUConTvCnkJERERhYyDUzlw+uqfq9hHuRk9ERBQ2iyRJUqwHEa8qKyuRnp6OiooKpKWlxXo4AIC6Rg/W7j2GnaVVeOiTLTjj+K5ocHvgstvw6vRR3JWeiIg6vVCu39zCvJ1JdNowYUA2ahrdAIC1e4+hoq4JAHCstklpukhERETBcWqsncpuLpyWgyAAKK6oj9VwiIiI2iUGQu1Ujs4KsuLKuhiMhIiIqP1iINROZaf6T4EVV7BwmoiIKBQMhNqpJKcdSU6b6r41e49iyjPf4l8r9sZoVERERO0LA6F2rFdmkur2B+sOYMuhStw/bxPqmzwxGhUREVH7wUCoHbvvvALDx77cXNyGIyEiImqfGAi1YxMGZOOtG07CjJP7+D32xSYGQkRERMEwEGrnTuqXhd9N6KvcPr55h/qN+8tjNCIiIqL2gw0VO4CemUl48aoRSHbZMaJ3Fwx96EscrKhHaVU9uqYmxHp4REREcYsZoQ7i3KHdcOrAHKS47BjQNQUA8MP+ihiPioiIKL4xEOqACntkAADW7z8W24EQERHFOQZCOoqKilBQUIDRo0fHeihhGdm7CwCgaPHP+P2/16KqvinIM4iIiDonBkI6Zs6ciS1btmD16tWxHkpYxvTNVL7+7MdivLVqfwxHQ0REFL8YCHVAfbOTVbeX7yrDxxsPxmg0RERE8YuBUAdksVhw2sAc5fbXP5Xilv+ux7biqhiOioiIKP4wEOqg/nLpMOSmqXeo33+0NkajISIiik8MhDqo3LQE3DZpoOq+Jo83RqMhIiKKTwyEOrDMZKfqdllNY4xGQkREFJ8YCHVg2kDoKAMhIiIiFQZCHRgDISIiosDCCoT++c9/Yv78+crtP/zhD8jIyMDJJ5+MvXv3Rmxw1DpZnBojIiIKKKxA6LHHHkNiYiIAYPny5SgqKsJf/vIXZGdn4/bbb4/oACl8aQkO1e2y6oYYjYSIiCg+hbX7/P79+9G/f38AwLx583DJJZfghhtuwPjx4zFx4sRIjo9awWq1qG5zaoyIiEgtrIxQSkoKysrKAAALFizAWWedBQBISEhAXV1d5EZHreawtQRD4tTY6j1Hcfpfl+Drn0piMSwiIqK4EFYgdNZZZ+G6667Dddddh+3bt2PKlCkAgM2bN6NPnz6RHB+10pK7TscTlw4DAByualCaKt705jrsPlKDa+euieXwiIiIYiqsQKioqAjjxo3D4cOH8f777yMrKwsAsHbtWlxxxRURHSC1TveMRJw/PB9Om+9bffGL30OSJBxhvRAREVF4NUIZGRl4/vnn/e5/+OGHWz0gijyX3YZnrxiOG99ch8NVDThcpQ6CPF4JNqsFkiRBkvxri4iIiDqqsDJCX3zxBb777jvldlFREYYPH44rr7wSx44di9jgKHLOOaEb+mQlAQC+/7lM9djB8jpIkoTfvroKU579lltxEBFRpxFWIHTXXXehsrISAPDjjz/ijjvuwJQpU7B7927Mnj07ogOkyDkuJwUAcNvbG1T37yytxpHqRny38wh+Kq7CloOVcMcgGPJ4pTZ/TyIi6tzCCoR2796NgoICAMD777+PX/3qV3jsscdQVFSEzz//PKIDpMg5rmuK7v3bS6qwo6RKuX1B0TJc+Y+VqmN2llbjzRV7oxas7CipwvCHF6Bo8c6ovD4REZGesAIhp9OJ2lrf6qOFCxfi7LPPBgBkZmYqmSKKP70yk5Sv0xLsOOP4rgCA1XuOYbsQCAHAqj1HVbfP/ttS3DdvE/69Mjqdwx/5dAuqGtx44sttUXl9IiIiPWEVS0+YMAGzZ8/G+PHjsWrVKrz99tsAgO3bt6NHjx4RHSBFTkF+mvL1uvvPwuaDlfj6p1Ks3F2GnFSn3/Fer6QUTsuJoG+2H8bV4/q0xXCJiIiiLqyM0PPPPw+73Y733nsPL774Irp37w4A+Pzzz3HOOedEdIAUOSN6dcGzV5yIT2+eALvNiiH5aUh12VFV78aH6w/4HV/d6Pa7r8HNQmoiIuo4wsoI9erVC59++qnf/X/7299aPSCKrvML85Wv7TYrxh2XhQVbSlDf5B/gVNW7kZbgUK0iq2/yRGVcFguX7BMRUdsLKxACAI/Hg3nz5mHr1q0AgCFDhuD888+HzWaL2OAo+m6dNAALtuhvs1FV34SyaiteX7ZHua+mITqBEBERUSyEFQjt3LkTU6ZMwYEDBzBo0CAAwJw5c9CzZ0/Mnz8fxx13XEQHSdEzJD8dD00twKKfSlHYIwPPC6u2qurd+L/Pf8LibYeV+0oq69t8jJIkYfY7G9EnKxm3ThrQ5u9PREQdV1g1QrfccguOO+447N+/H+vWrcO6deuwb98+9O3bF7fcckukx0hRNmN8X/zrd2MxIFe9vL6qvkkVBAG+jVtrGtyY8foq3PPBj5Ck6Pf+WbfvGD5cfwB/W7g96u9FRESdS1gZoaVLl2LFihXIzMxU7svKysLjjz+O8ePHR2xw1LYyk9Urx6rq/YulAeC7nUewpDlAGt2nCy4e4b9S8NXvdqOyrgm3TRpgqv4n0BHidJwkSawnIiKiiAkrI+RyuVBVVeV3f3V1NZxO/2XY1D50SVJ/7yrqmnSPW7e3ZRuVl5fu8nu8vsmDRz/dgmcW7cC3O460elxizqnJw+7TREQUOWEFQr/61a9www03YOXKlc0bdUpYsWIFbrzxRpx//vmRHiO1kQSHutB9Z2m17nFLt7dMl+06Uu23HYcYQP3j21245MXv8eaKwI0YAyV5xOm3Ru6DRkREERRWIPTss8/iuOOOw7hx45CQkICEhAScfPLJ6N+/P55++ukID5HaSr/sZJx8XJZye/NB/S7hPxW3ZAObPBIOlNepHi+vbQmEvt1xBGv3HsN98zYp972zZj+uemWFYcZJyysEQg1RWr5PRESdU1iBUEZGBj766CNs374d7733Ht577z1s374dH374ITIyMiI8RGorVqsF/7n+JNxypm9l1lphCgwArh7XW/d5u47UqG6X1zYGfJ8/vPcDlu0sw0tLfzY1rgahxxEbOhIRUSSZLpYOtqv84sWLla+feuqp8EdEMZeWoP6x+O1JvXHqwBxMHJSDD9cdQFWDuoh69+EaTBzoywx1z0hEuclMT6XBcR6vBJu1Za6s3t2SBWIgREREkWQ6EFq/fr2p47iip/1LFQKhiYNycO+UwUh0+uqHMlOc/oHQkRo8//VOPPnVdjxx6TCYXVEvBjuiJo8XNmtLvZLY9bqRgRAREUWQ6UBIzPhQ53Hn2YOUIAgAMpKc2FtW2/y1A+W1TdhTVoN/NRdD3/XeD7j+lL6mXtsqBM1iSNTk8aoKt8VtPRrc0a0Reu273dheUoU5Fw9lUE9E1AmEVSNEHduJvboAAPLSEnBC93TVY12SHMrXg3JTAQAHNcXS//h2t+7ryisMZVaDQMPtkfDxxoP47asrUVbdoMoIRXtq7JFPt+Ct1fuxbGdZVN+HiIjiQ9h7jVHHNTA3FV/cdgq6pSf6PZYp9Brq3zUFK3cfxaGKevTJSsKe5kyRkSaPBI+3JRCyCWG42B6oyePFLf/1TcW+sORnpLhafkwbdDaHjYaqenN1TkRE1L4xECJdx+el6d6foQmEAKC2UX+6KjfNhZLKBuV2vdujqvERM0JNwv1ir6Cq+ibYbRbhsbZZPu9pg61DiIgo9jg1RiERp8ayU1zIaL6tlw3SZpTqGz2obdBfAeb2tnz9m1dWKl+nuBzq5fNtlBESM1eRVF7biH8t34NjNYFbDBARUdvoFIHQRRddhC5duuDSSy+N9VDavS7CfmQpCXbkpSWoHr98dM+WY4WgCQDqmjyoaWxZcVYnZJIahbkxMajySpKmWLptAqFoJYRufWsD7v9oM258c2103oCIiELSKQKhW2+9FW+88Uash9EhiPuRpbjs6JauDoSuHNtL+frUgTmqx+qbvKgVAiGxP5B2mw5ZZV0T6tpo1ZhYyP3op1vw2nf6Rd+tIW9PsnL30Yi/NhERha5TBEITJ05EampqrIfRIYhZnhSXHXma6a/sFBdG9MpAaoIdF5/YA4vuOA2pzcXOdU0e1U7yYqanySAQqqhrUh0XzT5C4nRYWU0jHvl0S9Tei4iI4kPMA6FvvvkGU6dORX5+PiwWC+bNm+d3TFFREfr06YOEhASMHTsWq1atavuBEgB1sbReRijJacM7/zMO3999BtKTHDguJwVd01wAfIFPjdCMsU6o93Eb7CrvC4TaZvm8W6cuSGLRNBFRhxbzQKimpgaFhYUoKirSffztt9/G7Nmz8eCDD2LdunUoLCzE5MmTUVpaqhwzfPhwnHDCCX7/HTx4sK0+RqeRltiy0DDZZUfXVJfq8SSnHXabFakJLZkjuSGjr0ZIPyNktKt8uSYjFM1ASK9A+qY31+GLTcVRe08iIoqtmC+fP/fcc3HuuecaPv7UU0/h+uuvxzXXXAMAeOmllzB//ny89tpruPvuuwEAGzZsiMhYGhoa0NDQsty7slJ/9/XOLEcIfFIT7MgUiqftVgucdv/YOsHuC4TqGz3qGqEmsUbIOCOUrOojFLxGqL7Jg3fW7MfEgV3RKysp6PEyvSXzX2wuxhebi7Hn8fNMvw4REbUfMc8IBdLY2Ii1a9di0qRJyn1WqxWTJk3C8uXLI/5+c+bMQXp6uvJfz549gz+pk3HZbVj9x0lYc98kOGxWZKW0BEJJwlYcIjkjdNO/1+GBjzYr9weqEXri0mEAfIGQGPw0GGSORC8s+RkPfLQZk5/+xsQnauExCMa0thysxBebDoX02kREFJ/iOhA6cuQIPB4PcnNzVffn5uaiuNj8dMWkSZPw61//Gp999hl69OhhGETdc889qKioUP7bv39/q8bfUeWkupCd4ssMZSa3ZIiSnPoJRnHfMFFdgEAoP8NXhN3o9qK8tqXLs14foX1ltVi9p2UV1nc7Dvu9vhl6NUJ6pjz7LW58cx1++KVcdf+6fcdw+d+XY9OBipDel4iIYieuA6FIWbhwIQ4fPoza2lr88ssvGDdunO5xLpcLaWlpqv8oMHFqzGg3eaNASCyCbtJkY3JSXcrrlVTVK/c3uD3Ydbhatdz++jfW4LKXl+NA855n4WyWKr+ukf/51xq/AEfbRPLiF77Hil1HMeN1FvMTEbUXcR0IZWdnw2azoaSkRHV/SUkJ8vLyYjQqEqUlCPU7Bj1+Eh36P2aqGiGvOtOT5LQhPdFXcC2W7ny1pQRnPLkUf3jvB+W+4sp6SBKwt6wGAKCNx95dsx9X/H0FymuNuzlPf20Vpv19heHjX24uwbSXl6uaQKa4fAFedYMbj3/+k3L/kWr1+/xrxV58/ZP6Z5iIiOJDXAdCTqcTI0eOxKJFi5T7vF4vFi1aZJjVobYlZl/qDba/MM4I+YIKSZL8MkJJTjsyEh1+z5GDjA/WH8Af3tuI0sp6pbfQsRrfFJoFLWN6c8Ve3PXeD1i+qwzPLNph+DlW7Are4LCm0YPyupYgx2nzfa5nFm7HS0t/1n3O5oMVuH/eJlw7d03Q128rH6z7BW8s3xPrYRARxYWYrxqrrq7Gzp07ldu7d+/Ghg0bkJmZiV69emH27NmYPn06Ro0ahTFjxuDpp59GTU2NsoqM4ke9QU2OS1hJdmKvDKzfVw7ANx3m9nihV5qT5LShW0YCdh2pMXy/d9b8gv5dU5Sl90fljI+QEbpv3ibl6yPVjfB4JcMpPDPkYAsAmpqzWNtKjKfUDpXXGz4WC16vhNnvbAQATBqcq9RiERF1VjEPhNasWYPTTz9duT179mwAwPTp0zF37lxMmzYNhw8fxgMPPIDi4mIMHz4cX3zxhV8BdSQVFRWhqKgInjba6byjMCo2Fnen/891J2Hf0VplRde8DQd1V5u57FZ0N3GRloMbAMpGpkZhzicbD+LHX8rx5e2nwmVveU9vCBusitNrTc2ZKJdOywDltYV5vVDeJ1qahCnIqnp3gCMpluqbPLjrvR9wVkEuzi/Mj/VwiDq0mAdCEydODNq9d9asWZg1a1YbjQiYOXMmZs6cicrKSqSnp7fZ+3ZUx4TgIdFpw8DcFOX2ne9u1H2OxWJB94zgPYDETtVH5UAoQMJnT1ktNh2owMjembrjC+aYsIJNns4LHAi1fG3UNLItiVuUhFFTTm3ktWW78cnGg/hk40EGQkRRFtc1QtQxyAGKzGKxIMGggFrUvYtxRqiwZwYAoLLePxAyas4os1nV7324usHgSH8Pf9LSB0le8q/XRFImBvnR7IptVjT3aqPIKa00/zNJRK3DQIha7Z/XjkF2iguvTh+l+/gVY3w70k/on63cZ1RYLeohBEJ9s5NVj3XP8O1xVlHXkqGRMzviVJye2ka3avn9kSrzGaHSqpYLlJzhEafZZH/6dAsmPrEYR4Qg0GhVXVsSi9KNNroN/TW9mPWfdfjXir0ReT1ST6kSUXTFfGqM2r/TBuZg9R/PNOzfc35hPvplp6B/1xTdx42INUJD8tOwWyiczm/e9V4MhOSMkLiNh56fDlVh1n/WY/KQXMy5eBgOV4dX0Nzk0a8RslqAV77bDQD4xze7lPv1mkG2NTEjpF2pZ6Sksh4ZSQ7dgA/w1V59+sMhfPrDIfz2pN4RGWdnp7fvHRFFBzNCFBGBmhhaLBYM7ZGubLUBAC9cNQL/c2o/XDKih+Hz8oSd7Yc3T4XJ5NVOlTqBUE2QjNAjn27B0ZpG/HeVr3P44arwpiGMiqWtwrn45VhL08W4qBESFgCYmSbbUVKFsY8twq+e/c7wGDEYjZVvdxzGdf9cg9LK+FqlFy5mhIjaDgMhiokpQ7vhnimD0S8n2fAYh82Ki07sjsHd0nDVWHWmQd7jTBsISZKE2obQVkNpGyCapWRUNDGgGBOKf9gHywhV1DZFbLrKSKPb/NSYJEn45Affnmo7So1bBERbaWU95v9wSDWdqfXbV1dh4dYS3PvhJsNj2hNmhIjaDqfGKKaCLZH/27Thytc5qS4leyPvayZmIxrcXuworQ6aEZLZrRbsK6tFcUV4WYRGjxelVfWo1ixD9zV09L+QBaoRKq6ox0lzFmFwtzR8fuspyv1Fi3firdX78N6NJyM3LcHw+aGMWfk6QEbI65Vw+d9XYNWe4I0mRZIkhbXFSSDnPvMtymoa8eDUAlwzvm/AY8UMXFtr8nhht1oi8vnjIHlI1GkwI6SjqKgIBQUFGD16dKyH0uEFWhmm1TuzZTm9vOpM27vo7L+Z33He7ZVw6hOL8fHGg6afI1q/7xhOnvM1/r1yn+Z19a9igVaNLdzq24Jj66FKnPXUUry/9hcAwBNfbsP+o3V4cYl+52qzJEnCsZpGVfATaKruYEVdyEEQEJ2VcWXNU57yOQrE7Ma5kVbb6MbYxxbhN6+ujMjrcWqMqO0wENIxc+ZMbNmyBatXr471UDq8QXmpqttXjOmFz245RffYh84fAqsFuHJsLyQabNvRFk4Z4Fv9tnBrqe6F1+haHChIsAvdrneUVuMOTX+lOpNZLiP3frgJJz76FVbsKlPuCzQ1ZhDL6RKv2a0dZyBmxhRo+iyalu0sw9GaRizbWRb8YBNiFdARdUYMhCim0hIcmDgoR7k95+KhKMhP0z32hO7pWH//2fjzhScY7l/WFtJ09kAzo06zmu2dNftx9/s/oMHtgVVn2w9to1GvVwrafNTIf1f5slZ/W7hduS/g1FgI7yMGeHUG26wEU1HbhIPldQGPMTMmsyvhIs0W4d+k8dCFnKizYI0Qxdwzl5+I++ZtwhnH5wQ9Nj3JF4Qk6mzL0VbSEsILhLRbWvzhvR8AAFML82HTqSsR+yF5JAm/eu47JLtseOd/xoVdh5LqsitNKI0yQn/9chv+GcKmrGLwow2EvthUjC0HK3D7WQMDjrnwkQUAgDX3TUJ2ikv3GDOxmdG0ZLSJny0SdVJi0BeNuisiasFAiGIuPdGB5644MaTnxHJqLC0xvH82NQar2Woa3LobwYodubeXVGHLoUoAQFWDO6RgTOyrlJrgUAKhRoPsyfOLd+reb0TcbFc7NXbjm2sBAMN7ZeCM4/33B5QkCdXCedl0oAITB3XVfR8zGaFYrbYSWyY0eryGPZfMEj9Hk0eC085AiChaODVG7ZKZqbFv7mrZzDfRYcOvRxr3LArk/ZvGqW6nusIMhAzqZ+rdXkg6q8zeXNnSqXlvWctqqPKawH17PF4Jj366BV9s8i19P3BMf8pJb2qsPoypLTH4MXr+LwZjuOOdjRj60ALldqCprbieGhMDoQgUjIufNVZZLqLOghkhapeCZYSenjYcvbJaVpn1yU7G1MJ8vNu8GisU2qAr3L/2jXZ7rzcIkF5e2tKVWruViPjZtD5Y9wte/W43Xv1uN/pmJ6OwR8vGweLr6E2NHQrQSsBoiibQ1JjMKDj4YP0B1e2ABdwmYpxYZYTE0xKJQEibEeoM3B4v7JEutiIygT911C4F2vH9xatG4MITu6vukyQJyWFmcrTv5bCFN01hNDVW7/agIYTVTkdrAzeA3Hm4pfnh7iM1mLehpT2AOA2ld8E+FKBg2eiCLGaEjFaNmb2YBwqENuwvx2UvLw8YaES7IaXWF5sO4c/zt6jeNxIdxMXTZXYlXHWDG0u3H27zcxAJbyzfg4IHvlStaiRqKwyEdLCPUPyzWtU72Is7wGfpFNs6bFakJrQEQtqanCvG9DR8L6dNnQFyBAjCAqk2CoSaPCFlEcqDBEJGmSetUDNCRlM0RhkhryqrYe7zBQuYVu0+iqXbDwcYY9tmT258cx3+8e1ufLLxkHJfJDJCjULzTbOf6cZ/rcX011bhaWFlYHvxwEeb0ejx4ra3NsR6KNQJMRDSwT5C7YM4PZYndF3OTHYqXz9ywRCkJzrw2EVDVRkhcWf7j2aOx4m9uhi+j9MvI6T/zyYjyYG0BOOsk3Eg5A3pr/hjOjVCB8vr8P3PRwCY3/tLL3NxqKJ1GSG5Rsjt8apeXy+roXffH97biFe+bZkS1GsXEKhWKFZTY+J5i0Qg1KDaHNfc63230/f9f3PFviBHxi+9RQNE0cZAiNotsXZH3nsMALKFr68e1wcbHjgLQ3ukI1lYci/vXg8AyS6bqqGhljYQchoEQv93yTAMDxBQGU6NhZgROqaTETr3mW9x5T9WYuWuMtX+a4Fo31OSJBwMlBEyuCDXaVaNvbf2F5zw0JeqTtB6K9QqdTJXXgn40/ytym294CvcqcloEoOzULtr6wU64r507hBrhNpzV2oGQhQLDISo3RIzQj27tBQPa5eWywW+GUlOPHLBEMy5eCgyhWAp2WUPWKRpNiPksFmQ6DB+HaOMUF0EAiE5C7RgS4lugKFHvAB/sakYo/60UNnaQ4/RFI1q+XyTF3e+uxH1TV7M+s965X69fdbMZK70slYW7S63YZIkCXe8sxHPLdqhui8c4qkJpUbo7dX7cMKDX+IbzXSfeL7qmjxYu/eo6Vqh9tyMkYEQxQIDIWq3xIxQ9y6J+Oe1Y/D+TeN0uzTLrh7XB1eM6aXKACW77HAEygjZzBVL261WZTNYwL/IOtDUmPbiecWYnrjljP7okuRAljDVB/hPjYl9girrmlBlMiPUJOxEf+Oba1FW0xgwm2E0RSM2fjRaNaaXDTMVCOmMJ9z9zFbvOYqb3lyrdLDeVlKF99f9gie/2o76Jg++2X4YJz76Fb7YVBzya4vBRyhB7f++/yMa3F7M/Pc61f3iz8PdH/yIS15cjicWbDP1mh5mhIhCwkCI2i2xu7TTZsVpA3MwsnemqeeKtSRJDpvqF/DFI7rjwakFym1t4GNULG23WZAkjKlfTorqcaOpsQadjNCMk/ti9tmDsO7+s/DkZYWqx7QZoWJhOutQRT0q68OvEQrE7fFt8aENYMTgx6iPUE2D//2Bir7lzIx+IBTeNh6/fmk5Pt9UjEc+2dL8Hi2P7Tpcg6tfW4Xy2ialCWQwYvAjTkeFUyPk0rRoEKfGNu4vB6BupyCqbnDjpaUtm/K244SQbof1tiJJEv69ci9Wh7HZMLVvDISo3RKnxrTTV8GIF0G7zaqa7rJb1ZMv2t45RjVCDptVVZCdmmDHynvPxMzTjwMAVBv1EXJ7/IISOaCyWCw4bWAOphbmK4+JHacBoLiyJRDaUVqFyjpzU2MhB0JeL55dtBOFDy/AdzuOtIzfxPJ5vWxYoIyQHKjqBkJNrStGPtCcERKDth2lVSG/jnj+xDKecAKhJM2WMXpZL6Ofuz/P34LHP/9Jud2ep8YCZXOjbcWuo/jjh5vw65eWx2wMFBsMhKjdkvcdAwL3FdKjLSi1C1kfm9Wq0+e5hVGNkN2qzgi57FbkpiWgV6avfsmws3ST1+/iKU77WSwWPHfFifh41ngAQHmtOoAoEQKhksoG0wFOqBfs+iavsmnr3O93K/ebaagY6tSYXI/U6PF/vXAyQmLtT3rzprn1QkC1o6Ta7zkAsGJXGRb/VKr7mBisiK8fTh8h/0DI/zO6DOrPVuxSZzDifWpMkiTc88EPeO273X6PxbKf4i/HaoMfFCd+PlyNuct2R2SFIrGzNLVjvTNbCqRDzQhpAyFxasxutRhu8GmzWgxrhBw2K1KEjJAcMAXrRF3X6EGjSz8jJJKzTbWaXeyLKxoCvr6RUBvvLdnWEhB0a1511+TxqoqojQIhOSNUWlWPO9/9AbmproBdvuWMkF5mpD5IRsjjlfxqTY5Ut2TR5O+RmBHaXuKfEfJ6JVz+9xUA9DeDbVQtcW/d1Jg4zStJku7nNtpWRptEEX92n/96B7JTXLh8TK+QxxQt6/Ydw39X7QcAXDO+jyrjarPGLhIK9XdILJ355FIAvj+uZp7eP8ajaf8YCFG71VvYZsJo2sCINgYQszyBCjYtCJARsllUxdLymIL9gq13+9cI6V305NfTZhzEjFAoGt1efLThAIZ2Tw9+MIBvhekwObDRBj5G24XIxz/yyRa/FVJ65CXj4dQINbq9qsACAPYdbflrv7Z5zGIgtOtIjc77tLx3eW2jfyAkfB8ahNdq7dRYk0fSDcSNtpUx+nndf7QWf13gy+BdMrKH4c9tWxM/m3YD4VA7Izz08WakJTow+6yBrR6XmFU22k4m3qxhPVNEMBDSUVRUhKKiInh00vIUP3plJitfh14jpJkas4p/lVpwwfB8/OXLn3DqgBzVcU671fC97FYrkl3+dUvBpu30Vo3pXdzk19FeaMMNhL7/uQzf/2x+SwOxY7Vc6KzdADbY1FigztUiuYu1/sawgQON+iaPTiDUEujIU3L1QkClN3Unfha9i6I4NjGoMrtdiljLk+ho+VVsFOgZBUJWExfs4op69Mw03p+uLYl1QKWVDepAKIQaoV+O1WLu93sAALNO79/qjI6YuW1we01t7Bxr8T0J2n7Ex58IcYadpdsHMSMU6rLb/z33eCQ6bEohs92qLpbOSnFh44Nn4+XfjgQAPHvFieiS5MCr00cH7CMkZoTMTo01NHlMTVPJr+eV1M0NS6vCmxoLlRgYlDcHE3/+bIvqGG0ht0xeNWZ2u4iWGqHgGSFtUKs3rbSvrKXzs9xwUgyo9J4jfl69poaqQEj42kxG6JdjtarVf2LgZtQeIMGgRsjoZ1+c/t0fR/Uv4vkpraxXff/MBHUyVWbJ5ErJQMRAyqjonzomZoSo3RK31TgcYjAwMDcVGx88W/nlJxZLy3+xigHM+YX5mDqsGywWi6qo0mJp+YVst1lV3avl185IUjd41Kpv8pjqjSP+om4Uduouq26bQEisTaqobUKD24MvN/u6R7941Qjc9O912HXYf4oJ8I230e31W9GU6rKjSicb4w6wakybEdJuq6G3hF8MOpSMkJjF0XmOeDHUG4d4X7BjRWv2HMWlLy3H8Xmpyn3ilJBxIKQfUBt1RReDzl+OGW+d0tbEz1da1aAaZyh/0IjPq6x36+4xGArxnevDbNHQ1uJ/8q59YEaI2i0xxS6vBAqFGFjYNcXSeuTpEbEeSUzrO2wW1fJ5eSrr+LzUgOMz21laFQgJx5c1FwKnugL/XRPqyjot8WJ/rLYR9Y0tYzhzcC6SnbaAK6aqG9x+GSFxaxSRnPEyUyOkfU29QEK872hNI34qrgyaERIDJXn12r6y2paxCVPndSHUCL3U3A/op+KWAu0mEw0ZjaZ+jJace0MIhCrrm3D+89+p+hFFi/j5SirrVec+lEBIfJ1IZITEH6O2zgiF29E8GuqbPLj6tVW6q/o6KgZC1K69+bux+J/T+uGC4d1b9Tp2k8XSgLpYWswAOTQ1QvLqMrvNiuE9MwxfT2/5vO4YrRbIMweNHi8OlNehvsmjZFS6ZSQEeLZxRsEs8WJfUdeE2ibf+9qsFjjtVgwUMhx6dh+phkezg73RmAJNjYWaESqrbvDL+Jzz9LfYdKDC7/1E4udtcHvxxaZDOPWJxUrDRaPMjRwgVdY3YcHmYr9pzyM6GTxxqtOoRshoDzGjJoTqjFDgqbG5y/bgh18qVP2IoqVRkxESb4cyNSY+z2zvrEDEtgNGtW5mSJKERz7ZYjqQ2FlajZPmLMIby/cEPK68ttEvYIpU+FRSWY+1e32F1++u/QXfbD+MRz7dEuRZHQcDIWrXJgzIxj3nDm51oaSqWDrIL2Oxs7QYQPmtGhOOO+eEPN99OvVFYkPFVJcdz1w+XPd9LRaL8vz/rtyP8Y9/jTvf3aiMX7uqScuo2NYscYm4V2qZjkxo/pyDcgMHQuv3lfsFHHptAoDAy+e1gYK2b474nBW7yjDyTwvxwfoDfq/z7Y7Aq9e0011//8aXyVm4tVS5T498/30fbsIN/1qLv36p3hpDPxBq+Qzi1icivQ1oAeOMkCeEjFBrLvyhEjNpvoxQy+1QNowVXycyGaGW9zbqkG7G9pJqvLZsNx75dIup5pYPf7IZJZUNeOCjzYbHrN17FMMf+Qq3vLUh7HEFMus/63DJi8ux63C17jRxR8dAiAiahopB1vCKfYTUX1uRLARCYn/qy0b1xMPnD8Fnt57i93qSBNQ2Z3XmXjs6YHZLDq7kxoaf/nAIgG+KKdDU15i+mX4rqVpL3tpDzur075oS6HBs2F/ul70RA0dRU4CpsW3FVaptRTwe44zQnAAZjmCXKG1GSCtYIPTxxoMAgJe/UW+NoRsIiVNjBtOLRgX1RoG7eK7l/dWMhFNr0uj24sdfKkLuZK3NCImdwvWK0n33e7F27zFV0CR+T8xuKxOIpAqEwm9UKMalehska5kJ/uTp1E+af6Yi7WC5799TaVVD3LRZaEud7xMT6RBXjQXNCAnHarfmSBKmxpq86tqH6Sf3Qf+uKUpmZnz/LOVxuYDXaQscrBj1S8pMdhlmxcb0ycRLvxmpavYYCfKyfTkQMspIyav7Nuwv97vQGQVngbbY2FNWi5PmLFJua7NMYlF3oELyKoMtT2T1mrof7RJ6o4BFzO7JxGBB7yLrFn5WjAKsJo8Xj3/+Eyb/7RvVhV9vKtfjlVTnxWifu9a4672NmPr8d3g1xFqSBlV9W4PqtjZQlj29cAcuefF7/O97Pyj3qWuEIjA1Jpz21tQIiT8nZlZ0mgk8jH4jtaZYury2EW+v3ofK+iYlwPR6JdUfhZ0FAyEiqDM7wcoUxKmIPlktvYx8Xadb/kkZ/XX78azxuHZ8Xzxz+YnKX4/y9hsOe+A3Nwp2slOchsv0p5/cB5nJTtx65gD0y0kO+vnMkvc4k7d+SE3QD7QKe2QA8E3PaDMr4nRdjy6JytfyNJAcVFx0Ynf89dfqzWflv+C1F09xCxK97ItZ2qkxbX2GUcAif8a+OS0/G9uaO1dru4LLxGkvo8yP2yPhpaU/Y1tJFeYJU316U2MNbo8q01Ab5MIezs/ERxv0M17BqPsveVVZniav/meXi7jnbWjJiKhqhCIQCHkjVCMk/jwGCoQkScJTX23Hkm3BG4yGUjtl1o1vrsX/vv8j7nxno5KV80iS6ndYe963LhQMhIig/qvaTJnCynvPxNK7JqJLcstqMG3GwOiCNiA3FQ9MLUB2isuvWDhYh2yjQCgr2Wn4mPzZJhXk4us7JmLVvZMCvodZ8tYecjCTmqC/Mk5cGaadwhBrhIZ2T0e/bF/woM0IJTis6JqqzjjJAYe2RuioMB2hzb6ccXzXQB9JRbUSTOd7afT9lccsXqi3Na8QO2BQqyMWSxu9rhjUiYGT3h/wDU1eVSDe4PYaZltayygANiIGww1u9UIBozHq1beJ35PKAPvWmaXO2kUmEArU1mPJ9sN4dtEOU69ptPOI0XfU7fFi88HA05byHnULtpQo3xO3V1L9UWimrUdHwECICOr0tJnLRW5aAnpnJSNQctqouFWkrZEJVvRtFChlpRhPjWnbAWSnOJFtsGzdDDmwKqtpLpZWAiH9C2Ky066MTZtFEafG7DarkpbXLp932qx+NVDKX7Ee44yQ1tXjeuPeKccbPi7765fbcExoDtnQ5FEFupIkGe7xJo+5WpiOkrMeRrUs4sXTOBASeiEJwZ7e1FiD2+tXexJqlsPsku5QAyHxZ6BB00PL6N9Mgs4UaiSnxiRJUi2f9/X28mDxttKQt0wRz3tplXEn9WB1WyJLiJNg93+0Cec9+x0e+XQLVu4qC/q9lINKr1dSlQm0JiA0o8HtwardR7Fhf3lU3ycYBkI6ioqKUFBQgNGjR8d6KNRGxGAhlJUrgVbam+kW3V2YDgJMBEIGj2cmOw2DJO2cv8Viwdi+WbrHmiH3RJK7SCcEmRpz2q2GPY6SVO0HLMqmm9rl80671S97JgcXbs10ijwuvd3tXXabqZ5Tzy/eiWe/3qncbvSop8bmfP6TUrCuJY+5VjO19szCHfjT/K26z1Ft2moigBa3KtELhOqbPAFrpwCgaPFOXPXKCvxn5T6l6F72zpr9GPHoV1i/71jQsYRaeyYGPvVuj2pqTNteQaabERJep6IueFGykdvf3oCJf12CGuH81DV5cMMba3HN66vx5oq9Ib2eeN5LK40zQkZT53rEZLOZAFXe1Hbu93sw7e8rsMTE/n6Ab+zie0W7seThqgZc9vJyTHt5eVTfJxgGQjq4xUbnE+oWHbJAU/dmXrKXZv8nV7Bi6QCBkNGqMbtOXv3qcb0BGBc4B+IXCNkDT4257FZVo0mReIGz2yxKWl6715jTblVqkWTK1Jjmgi9ncvSmoZx2a1jNN7VZgb8HqIuRjxULlPcfq8PfFm7H+n3lus8Rg7kmExmIYIFQg04Xb7kBpnwhfeLLbVi2swz3fvgj9pa19BmSJAl/eO8HHKttwk1vrgs6llADoUZNBkgMGI2Cg2BTYwu3luKhj42Xnwfy4foD2FtWi6+2lCj31TR4sLQ5eHhv7S8hvZ7ZqTG9P5SMghwxGym+vtnfWktN1CEBvoyQJ0hhfySJGd9YYiBEBGimPcw/T6+I8d4px6NXZhJumxR8R+xemeqMULBiaaMVJumJjqA1QqKx/bLw7o3j8N6N44KOUe+9ADEj5LtIGV0QnYECIWFq0G6zKmOVL4gNyi9KmxJwyeS0vTbzcay2EXM+34oHP97k934uuxXpiaFPC4YyPdLo9sLt8aoyH6t2Hw34HLeJqTHRoYrA0yoNbv+M0OHqenyxqRhjHluELzYVGz5XzE4dNig2F6dMjAJgI42azazFaS2jveiCTY0BUDZgDZcYOK7c3bIZcaGmGercZbuxeFup8euYnBrTmwY0qskR/wmLzzP7q8qoW76W2y8Qim5GSP4sjlb2gWst7jVGpBFKu3u9QOiGU4/DDaceZ+r52oxQsL+MjLI+6YkOw+c6DJbDju6TaWKE+u8FtEz9yJkao6ya025Fiks/06WdGpN/Ycu/jOuapytcDv+M0Fl/+wZ3TR6E0wbmqO7fdLAS6wwyLwkOK6wW9YXbalFvr6AnlKLRRo8XtZoLSLAaCLeJVWOiQxX1Sl2LXoFxfZPXb5rpkhdbph/k7ti6YxGeZ1S8LE47Jjr9f+72ltUgNy1Bt3O4NoARX8tt8NkTdH7uI13IKwYwciGxdkxr9x7DQ5/4Oi7vefw83dcRv5cHjtXhte92Y8rQbshLT9Acp7+ti945E/9lGa2sC8RuMuPildRtF6IfCDEjRNTp9RQCIasl+C8so18Y6YkOv0BBFuq0X7AO1NpNZINt3eG0GWeEkrTF0s3TePLeW9tKqgEAfbOT/TJCgG96R3uxDpS9cdpsSNeM38xUWUiBkNsbct8e8aJopkaottGDPWW1GPPnhcrGt6IGtwcm4ildRp2tRWKjQO37rN93DKc9sQQXvfC97nO13x9xxZdRRkiv35T2dayW0PfsEo83Ou1ikXmwTBygDqgOVtTjkU+34KQ5i/zG1qTzWY0K2sU/uEKpLZIZ/TGk5fFKQXteRZI8vRksEx5tDISINEL5Xdra9h69hT5EI3t3CXq80fRXoIyQXo1QIAkGAZX4XqrjDfoXyVwOm+G0WYKmRkgu7PZ4ff1ldjT33xmSn2YY6MkXz2QTnbNdDisyEkMPhAJtJqtVUdeEmobQ/pJuCnFqDADuencjymr0i4Qbmrx+ReTmx+LVnUo5WtOoBHjiyjxtZkPuL7T1UKX+2AJlhIymxoSfMa+mkP68od1890vqlXpmqKaZDP7hi/2kxEOMlqYbfYblu8rUx+l8n40aOVpUgVDwjJ2W2d8Bbm/bZoTkYDbW3awZCBFphPL3ltm5dyN5aQnIT09AosOGORcPC3q8YSCU5IDTICAJ1ik2X5OyD7ZyzS8QChI41Ta4DQOhJM2mtfL5bPJI2FFSDbdXQnqiA90zEg0DLvlikGWi8NtpsyLJaVN939KTgtcMhVIjVFrVEPIFWbV8Psh7ndgrAwCwZq/xiq56TUPFULg9EjKEcyJJEo7WNGLEo1/hvGe/BeDrSizTXozFPw7u+eAHpYeSLJypMTEjJK9kkl+nR2aiMmUcqHWCHjHoNDpfYjG3eMSJj36FosU7/Y43CpAWblHXFQXb6FcknlMxaDabHTLbLdrrlSK255oZnBojilOhXD+uP7Ufuqa6cONp5mqCtGxWCz65eQKW3DUx6F5dgPEvjFSX3XQfIa1Xpo/G4G5pyu1gf535B0L6AYp8cTqhe7qpqTGHzaosn/d4JWw+6NsdvqBbGiwWC6xWC96/yb+4W858uOxWpAXpaeNyWGGxWFSfN9JTYx6vhP1HA+/2rnW0phFvrtgLr1cKmhH69cieQV+vrtET1hQK4Ls4pSe2nMeaRg+W7TwCwLe9idcrqTNCmgu6OI3z31X7cfELy1SPa7NrZjJC4s+9nG2TAyGXrWUloF7LhEBUgZDBaReDEzFrVFHXhCe+3ObXvdwoS1PXpA6O9YJro8BD/Cdspvmm9neB2c7Ubq+k+rmJ9vL5JqE9RiwxECLSkELICXVNTcDKe8/E3ecGb9JnJCvFhdy0hOAHwvgXhsViCWnVmKggPw3zb54Q9D1k2sDBqKbo+7vPwHs3jgsYCCU6xFVjLcXSbo8XK5tXWg3rka4cM7J3Jk4ZkK16DfmCYrNa0CU5cHZHvqD++aITAPgCyOwgz/G9R2gXhN1HakI6HgDum7cJr3+/J2iN0En9ghe51zS4w84INXm8qmD4cFWDaquI2iYPjgmBkPbCr/1xq9FM92iDygNCY0E5EPJ6JdUFX/w3KfdDElsryHVroQZCYlBmNJUYbN+xUX9aiNeX7RZeR/+8N2pqr/SmW+sa9ccgNlQUgx+9OiPAf1GF2elWr6TNCHmb/x+dgEg+J5waI4ozoV4/tFtrRFOgXxjGq8aC/zMX96tyBKknyNBMJRlNjWWluDCqeWWaqVVjQo1QXZMHC5v7upw5OFf1HO0vefniZ7dZ0CXINJdcjD6sRwY+v/UUvP0/40x1Rm50e011CpftOlxt+ljRG8v3BL1omVmuXt3gNrwgB9PkUWelDlc1qLogV9U3abI42qLlwP8etJmQXYdbgkZ3c+PKqc9/hynPfqsEWeJHUTJCQjZBDs5DnRrT7numR50R0n+dh5tXkvnGahAIab6v9ToBlmGxtPAjL/4cGk0lavcdNBsIaTfrrW/y4O/f/Izj7/9C+fcYSfK4zBZzRwsDISKN1mw/EW1Gy+e1j4l/lYe6aixYXKfNCLnEgmeD90px6V+8xdoPC1oyQt/uOILKejeyU1x+ReTaX/LyRdlmsaBLkvmeNoO7paEgP001fiONHq+pi4mcmdgVRkYIAPaW1QatRzITuFU3eMLeMLPJow76jlQ3qAK76nq3aquQUKfgAk0zeiXfBqqbD1Zie0m1srGvGFzUaDNCtpbeUHoZoRW7yrD85zK/+wF1UNFgkPVT1wgF/6xGU2ParKJe0KPNvMiBobiA3q0KhMxlhMwW+3t0Gio+9tlPAIA73t1o6jVCwWJpojjz/JUn4tcje2Da6F6xHoqhQNNW4i+/ZLFRYRgF3ZeM6GH4WKAaoTevG4tu6Qn4x9WjVMckG2SEtMui5YzNtzt8NSmTh+T6BXLaX/Ly8mszU2N6jILLN64dg1HNQVijZnNQI/npvgaZuw+HFwgBwJbm1VZG43LZrUH/gq5uaAo7I7Rq91HV8v8Gtwc/C5+nst4dsAmiUVbj+5+P4OWlPysBh/h9PX1QSy+oKiHIko8Qg7pnF+1Ao7ulYaVT2DalXLPVRkVtEy7/+wpc8Y8VaHB7UN/kwbz1B5S6HjG4NQrQ6oStN8xki40DIfXr650n8b6q+iac+8y3uLBIXWMl9hEy6imk/T1httjfPxBqGU80dqKXz3+gP/DaAhsqEjX71bB8/GpYfqyHEVCg1RXiL79Epw1VzRczs83URE9eVojB3VJ198ZKS1T/2hCb3Z3ULwvL7znT7zlGq8a0vwC1QduU5qXRquc49DNCdqs16NSYmTHITh2YgyaPF7/75xo0uL2mCqZ7dEnElkOVyrlPT3SEXLeytnk12O8n9keS04bTj++KSU8tVR63WCywW61o8hjXbVTXu8Pebf6RT7eobtc2evDLsZbi76r6JlWwIr5PbaPbcHrqyn+sVN1OS7ArtUbinnvi8+ULuPhRvt1xBE99tV01NWZUI7RFWMJfVe/GP77ZhZe/2YV+Ocn4+o6Jmqkx/fNZ1+SBJEmwWCyGgZD4b88wEGoe776yWhyublBlmvTG8NRX27Gj1JeJO05YSNEgTOEZZSnDrRHy6ywtZLHCrTkLpGVqjIEQEZkUKCMkPiZ+He4+anrP8y0/1wRCJqaWjIqltfVI4nt2SXJgbF//wmCjGiGb1YLMsDJCxuOXz+Pmg5V++zpdNqoHymubsECondBuotslKfRASJaaYMe1E/rqPma3WYAALztvw0HMa+7n01rHahpVgUh1gzYj1FJQO/LRhaZ3uU9LdCiBUE5Ky2IBscGisiu65iL85oq9OKG7b+Wf097SG6qi1jgQqm3wKJvLynVJjSYyQl7J91iCw2Y4MSb+geIxCBia3L5mhac+sRgAdH9WH/hoMyYNzsXG/eV4fdke5X6jgE2eGjtW0wiXo+Xfpvb3hLZJplF2R7vXmBh0GX0u2dGaxpD//ckLA2IdCHFqTAd3n6d4Jf6CO7V5a4lbzujv95gYLITb60gvEHLYLKoCZ8BcIGSUERKLtCVIql+IJ3RP181maRsrioGQtuu1GUaNGoGWC5y2iBQAxvbNwqzmcy/L0lwIzPQoMhJo/6W2vHAc0wQXs/6zXslaAS0X4/1Haw2DoNpG/75KaULRd05qSw8oMXCUL8TaQKi6wY2dpb5gxmmzKt3CtdkouQWD/BxttqbJREYIaFk5ZtR00Wm3QpKk5o7e+sc0eLxYu6/lvB01aIb54Meb8beF21X3GQVCTR4JlfVNOPHRrzD6TwuV+7ULOLQ1QkY1Q26vpAp4xBVzgRKMzy3agRGPfoV31uw3PkgHa4TiGHefp3gl/sJ4aGoBFtx+qrK5q/hXqZjlMNtMTUsvELLbrHDYrKr3CtZQEfB1hr52fF/8+aITAhb7iu+Z7DSaTjMolrZakBlG4GF2ulEr2WX369ibpqmf0naxDkYMWp0Bvm+tbeQZCnE7DT1ygBgo81hW7f8a4hRrVopTKdJXBULNUzN6pTBynY+vf5TvPItF3ACw5aCQEWp0+2U11MXSxtNHcoAXKCN0y1sbMOSBL3GoXH8bjka3N+Bmt7IDx+r8soji1JY4XeX2evHTIV/DyppGjxKoaTM+2sDHOPtlPDUWqE78ya98gdu9H/xofJAO9hEiopCJF8CMJCcG5qYqWRWjqbFQt9jQey+Z3l9u2qkyPRaLBQ9MLcBVY3sHfk/h4p9kUGCtDbwq6tzKeLVL+80Qe+TI5OAo0LRZaoLdr2hZG+QZNWu8+MTu6JudjCd/Xai6Xxx/oL+S2/Iv6GBL0uULp9HF1Wa16G4FkiqsJOyS5FSmSdWBkO81xQCmT5Zmo2J7y1522j3e9gmNLWsa/bM1YoARaOanNkhGyGG34JONB+H2SvjPqn26xzS6PVixS3/1mqhbeoLfuRQDGXGZf5Pbq57Kan6eNnupLZY2Kp4OVCwdbGoMCL3ouaWzNJfPE5FJ4i9I7UVXFQgJF8rwa4T8fz3Iv7DEX8x9s5P9jguXGHxpp+Bk2uCkspU1QtnC1hxyc8jhPTMABP5LNcVl95u6S9W0CTCaqivIT8PiOyfikpHq1Xni9zRQsBNKlu/C4fkY3Sf4PnZGyk1mhIwCIY9Xwn9X+gcHYkYoM9mh/JyKgZB8wZYDkMcvHoozjlf3lXLYrMrUq3ZrE/GCX6MzNWa2Y7gcEBjVHIv/3gwbKnq8OGYwHSY6Wtuoqs0B1LU6qqkxgy0xtBkhbbG00dSY3vJ5mZliaXEhg8cr4aY31+K5RTsMj29ksTQRhUr8Jaj95SH+Mg4zCaSilxGyNV+Ak5w21DZ68PuJx4UdaGlJkjp7ZTw1FqihYug1QheP6I6SynqcfnxXJDiseGP5XtxyxgDd9xL5psYCZ4SMpsaMfvGLtVR6QZj8fqFMjWUmu/D05Seiz93zTT9HFDwj5LuYNQSosXlbp3ZELKDvkuRUCsB1p8aar8FWqwW5aeo95Zx2K2zN82riZrdeTV2XXiCkzSAZkTNCRt2nxX3+jHr7NLkl1Wo7rXH9srB8VxmO1jQqnzvVZUdVg1tVeyUGJ26Puq1DXZMHGfDP3vgFQiYzQmJgaWbRmPjv5dsdh/H5pmJ8vqkYN585QPd4sTt4LDEQImpHjLrfAuqiZaMgIhRWnYut/Ivrn9eOwfp9x3DteP1VTeFSZ4SC71gPtPyytlrCmxpLcNhw+1kDlduPXTRU+TpQIXVqgt3vr2RtjZBRsbSpQEjnGDkTFMpf0K39YztojVDzhb8+hP3YAPWFNT3RoXwm7dTY3rIapWjXarH4bUfjtFmV6VLxwq3NemgDoacWbMOzX/tvmqrn0x8OYtnOI37fX2UMdjEjpH8eahvdftuNiKYW5mP5rjKUVjYogV9aosMXCAnPE4MiXwPKlvMlH+dXI2RyakxbLL29pEr3OCNiIGQm28bl80QUsqwAXa8THDa8/NuRkCQJn5soygxGL+sg/2U8uk8mRvcJvudVKBw2q+qXsFETRqPfmXarb7+1MX0zsap5n7LW6pqagIemFuChT7b4PZbisvv1gjGfETLowB1kaky+z2hq7Jwhefhis/p7L09xWiyhbx8D+K8a01KmxkLYjyrZaVNlKew2q+7U2NJth3HrWxuU21YL0FUnIySft5pGt9LzR5sF0X4PzQZBAPDG8r0A1PveiVzi8nmDqbHK+sDZJznTJQY68s+TeJ/2PIvtBuTjtBkh7f51Rl20vZIEj3BsVZAxa4nT1jZh5ZrXK+n+YSUv6491Rog1QkTtyGWjeuKKMb3w0m9G6j4+eUgezjnBvwlhOPT2jNJrAtdat545AEO7p2Pa6J6qvkLartMyozoN+YL/1vUn4bSBOX6PD+2ufxELZsb4vn4FuoBvetC/WFqTETKRQZDZrRakusRAyLhYXa8A/t4px+OpaYV+98vX6NZOYBrNxgUrltaTkeT028zU0fwG4oX9g/UHVMfYrP4ZIZe9pUZIknzbm/xrxd6QL+Jm/PBLhe796oxQeI0HM5OdftPMciAk/rvTLvMXA0f5Me30XFMoxdKtaJwoZlDFH1Gjn4142WuMGSGidsRpt2LOxUODHxgBenuOhdutOJDbzxqoTE2ZWT5vVLQpZ7CsVotqZdkfpwxG1zQXTh3gHxyZpdcryWKxqIqlExxWpCXYYbW01LQYFUvrBTJ2m0WdEdIJluTzo3fhOKsgT3c6Ua/oPRzd0hNVO8XLxIaKZqUnOvwuuHL9WaAGlBadqbHUBDsSHTblvF/96iocKK/DymGt/4NArtEJRvx+hBtHOGxWdEly4EhzqwHflJ/v586oRgjQBkLqvks3n9Efz32907+PkMkaoVCJU2NiL6O6Jo/uHzYNyqoxZoSIKA5cOda3x9odZw8CEP4v9NYQLyhGq8aMuuLahOeKAUqyy44LhncPax+yYGMRpw/7ZafAYrGoghGjQEg322O1qgqI9S4OzgAZIaMCaluwXXRNuujE7rh6nH/7Azn7oP2rf0L/bMPXSk904LZJA5Gd4sQfzvH9vOktn9eyWtR1VCN6ZSAjyQmLxaIEznKwJneRbo0UExvcApGpcXHYrKpVjy67VZlqUjVUdBtnhOQsmxzMdG1uVKmdJmwwsWosPz1B95jFP5Xisx9bzq3YUkCcGhOn2LRBsvwecqYqUPPQtsBAiIgAAH++8ASsuW8SzirIDX5wlIjZC6NtOYwuTuIFXwwiwm0oKTKaphMvgPJ+UGL2KC3BIBDSmxqzWVQXeb2Lq1w3pfeZ5BqM356kDlYi8fkB33L3Ry44AVeNVW9KbLR8/s3rxqpW8d01eZDydUaSA32zk7H6j5Pw+4m+7tx6NUJa8vf40pE90KNLIp6/coTymNmgJRRGP4NakfibQdv+weWw6jYr/XijeuuUCp0aITkjJP8shjQ11vz91PvsHq+Ea+auxu//vU5paCl+38WMkKoJpBAIPb1wO4Y/vAA7S6tYLE1E8cVisah66kQokRASMathFHycMyQPFwzPR5ckJ+Z+v0e5X5xWE18nEvUHiQbbiIhJmH7N/ZTE3+lJwsXEbrUoQYNetsdhs2r6CLW8+JO/LsRTX23H36YNV47Vkj/zoxeegLKaBnz2Y3HzeCLzjZQvjPdMGYxu6QkYkp+Oa+auVi6celNjYq1KQX6a8rWcKROnT+QsXqCZGfn4v/66UCmK1o4vkoy2htEKZWf2rqku3SaeDpsmELLbdBt6ajO1YnsDpVjaqw6ETE+NCZ2l9erYxCm6yromZKe4VPVL4nPE9zxa04i+2b7v19MLfX2F7nz3B+X8cmqMiOJeWxUzitkLoxohu82KZy4/ETNPV+/zJQY/4tRYuJ21RYkGYxEvxP1y/BtLigGU+Ney0Yowo4zQJSN7YNndZ2BIvq/gW28aTCxuF7NSchZl4qCuAPw7M5sljy3FZcesMwagf3MGTK4REjMDtzdv+yJOwYiF4OmJ/tOUZnojiUGddj+taARCgbaDEYVSYKzdmFdmt1lVP/MuuzVg+waZuBpNKZZuDmbkn79QOku7AwVCOoslagx6DYnvcelLy/HwJ1tQUlmv3LeztDpu+ggxECKioCJ5kQl0uRMvdEZ1OTLtRUqsEXIYfB2uxAAXpNF9uiA7xYUzB/tPKYqfR+y6qzcm7dRYoItDoIwQoN9Z/K+/LsQdZw3Ev68/yfB1A9FmR+QxeLwSdh+pwZJtpQCA6yb0xa2TfA30xIuhWDult5rOzBReoFgpNQqBkNl+XNoanEB6dGkJRMWfYbvVoq4Rs1tNbVmx9VDLfmraPkJiRqiu0aN8PwJ1lpan1fTeW8z6ya8hZoTEFXPa95j7/R6MfWyRcru6wR03naUZCBFRULc2d4a9cHh+VN/HGsJUR4LDpgoWxBohMQsUiYzQhAArzv57/Un4/u4zgk6jBMsIaS+EoW6xYVVlxFq+lgOhzGQnbj5zALpn6GckgtF+P+TXbfJIOP2vS5Sl5Xor7HzPb7lfr4jcTEZIr6WD3utHitm6I6MMix7x/MvFzID8/VdnEAPtdadHXjUmZ6gSnVbl/jOfXIJznv4GXq9kMiPk/97qZfy+16hpbMkIeYRmktq6JP3x+l6Py+eJKO7NOLkPxvbNwoDclFa/Vq+sJGw6UKn7mDqDEPwikJbgUIo2VXVBdvHr1gdCU5uXYmcmOfHu2v24/pR+ymPa/caMiAGCXrbHYbNqgqVAu88Hzgg5dDJCraUN9IwCF6MshljzpZcREqfWEh02VT2KTK8pnyyWNULahoWBiFNjuWkJ+PlwDQDf9zRJNTVmC3kTU6VYuvlUij9zByt801IHyusMGyp6vJKSTdJ7b73GjrUN5jJCerY1d66OdY0QAyGiDijSS98tFouq2LU1iq4cgUc/3YKbJh7n95j4y9PMRSAt0a4EQgnChVZszOiIQCBgsVhwfqEvGzZhgPGy8ECG98zA7iO+i55RjZCYAQi8+7zOPnBBpsZaSxuY2gwCNaO6FnGaSW811OmDumJ7SRVuOXMA0hIcuG/eJr9jAn0Uo6Clb3ayct5DZTYQMpP9kOWkOPHni05AZZ0b+4/V4vuffTvSa6dGXQ5zNUKilhoh33j0snNbD1UGLJaWn6sXrNcK2R85cFVnhFp+8TSZCA7l31OsESKiiLt4RHcAwPF5qWG/RrSS1b2zkvHK9NEY2dt/iw7xF7S2GFaPuDy9b1ZLsbLdoKdQLMy/ZQIeu2gopha2NPjTy6b0ykxSTRmFOjVmi3JGSJtxMcoIGU2NiYXjehmt288aiE0PTcbvJ/Y3fI1AU2NiIe65J+QpX+ekurDy3jPRMzP0KUGzWaZgNUJiYJqV4sJVY3vjponHqf6N2W0WVbDpsluREOLUWF2jB5IkKSvv9M7jT8VVhnsW+jJCLe+vVd/k3+FaDI7EjFAoncZZIxSHioqKUFBQgNGjR8d6KERhmTioK766/VTMmzk+7NcY1byXWFYrGhGGyihlb0QsNpX7+ADqX6yR6qNjlkUTQg7JT8eVY3vBadOfGnvj2jGYPCQXD50/BD0zk/CHcwbh0QuGBAxg9AIJsUZK9fkjFAhp2xkY1V4ZZfLEaS29FXZAS9Bq+BoBAqFBeb6MZaLDpqrDcdmtyE1LQJcwNuQ1XSMUJBBKEmp/xH9P4sexW9WrBl12W8CM0CUjevg1Paxr8qjaDyTonMdtxVWGXcB9NULe5vfXWzXW8jkb3F5IkoQaYWpMnRFqP4EQp8Z0zJw5EzNnzkRlZSXS08Pbn4go1gbkhp8NAnzFtevvP8uwn0805KWH9le7mEHqLSwLV9XLRGiLidYyyticOjAHpwp7o8kNBgPRmxqzGtRI6QVUM07uo+rBZEaSQxsIGdUI+f+8yAHrF7edgvLaJtXKKf3XMAqEjJ9zw6n9kOS04eIR3fHG93uV++VzbSbDqJVisgA72NSYeK6yUly6x9isFlXfqUDF0n+5dBguG9UTe8tqcNoTS5T765s8qmDEbrPCYbOopqm2Fleq+hWJfHuNye+vVyzdkv3Zd7QW4x//WrV8f+3eY7igaBlenzE6aAG5uH1JrKfGGAgRkaHWbEsRjl8N7YYdJVVKNiqYw9UtjemM6mvaOiNkRLwOt3aVTLDpvmA1Qg+dPwSXjuyBXz33nan3c9qtfu9ptVp0d7QX63/+c91Y/PmzrfjzRb798Y7PM1dnZnRhDFQsneKy48bTjvMbg3yuw8mMpbj0O4NrBcsIiVNRaQGyTGLg5XIYL5/v0Vxw3T0jEU67VQk6FmwpwT++3aUcZ7Na4LBZ0eRpydqUVTcGzAh5AtQIic/764JturWIG/eX4/mvdyqZJSOD8lKxZu8x33txaoyIyMdqteCOswfp7h6vp6x5g0qtSPcRCsU5zfUpx2mmf8RRtHYqIFgBuKpGyCATEkqmz8xeazIxID25fzbm33IKhvfMMP1e2tcQBZoaE6lX6Pm+DmfPtWBL8i8Z0QNA8OXzYgAhZqa006hmV43J58dus2LtfZPwuLAR8xNfblO+tlksfj9r9U0e1AfsLO37Wi84EZfPB1qQUdfkCXpOju/WkrEWM5ixwECIiNqtx5ozDfLGnbJId5YOxf+eczz+cukw/PcG48aFrQ2EgmWEzBRL613ozji+q+6xRo0F9V471CXfeoxqY8wmdfSaV4bzY5AaJCPkbL6AB8sIuU1uwaFtqOkyKBoXM16pCQ7kGmyQarX6Z3Ya3F7dDtFA8IxQlTANFojVEvycDBKyg6wRIiIK03nDumHccWepNvcEtNtttO1fm4lOGy4b1TPgMa1dyRXsM+k1VDTzGq/NGI0+d8/3u99w01mrFfVQX/CMLt6hMAqmzJ43sUhYfq1wznmwrJl8ATezVFyPNkklZt7sVkvQjJBMMkjP2K1WpCXYcVizt1llvf7GtuKmq3qBkNHztKwWS9CM0EBhcQNrhIiIWkGv8FP8CzPWf23K8sPs6KwnWAG4mT5CoZyXZIOAQK+XUEQyQhGcGpM/p9FzbVaLqsBY/TrmMm9Gzw+VuFzf45UM2whoz3GfLP1VeFaL7+dObtooq6gNHgjpfR8r68wGQsFXjeVnJGLm6cehySOp2mDEAgMhIupwjFZoxVLPzCS8NmOU7oajoQqWETIzNRbKajqjzIhejVCw4MEMo2DKbJmPqkbIZpwRykp2YtndZ+D4+78I+jp6Iv2zJX5ut1cyPA/acfXLScF7N47Dhv3l+NP8rQB8wYjFYtHdUqW8Tr+2zrdqLFBGyNzUmMVERshus+Cuyceber1oYyBERB2Oqj9LnKwaA4AzjvffmDUcwS7ADhNTY2KB6rXj+6oaPmoZZWj0XjsSwUGrp8bEVWPy1JhOFOW0W5HgsMFqAfSSOsECIWeAny1xRd05Q/LwxeZi/M9p/dTH+D2n5R63x2s4ZaRXQzWqTyYqhIyNfK50AyGjjJAkweORM0L+n73K5NSYxRJ8ujBSjT4jIT7+VCIiipJ46SMUScFWwon7qxkVi4v3nzesG07s1QUA8MSlwwAAf77oBOH9gr+GzOz0VSBRmRoLELQZfT69hoR6z9cjBl5PTSvEG9eOwZ1nDzI8XsvtlQx/do06Tovjkc+V3pSstuuznNkLmhGqM1ssbSIjFEf/LuNnJEREURBPGaFICXYRUdcI6R+jDqZa/nr/9aie+OnRc5Sl4UDL6ii/cQivkeqy4+pxvdEzM3CzRDNau2pM3M5Dzi4l6mR35HNgGOgFy7wFCJTEwCvJacepA3P83idQk0e3RzLcz80oEHaqAmDjQEhLnvr01Qj57tOtETJdLB181RgzQkREbSRSW0zEk9BqhIzqbdQXalGCw6bZpiP4VNX9vyrAIxecoHtcqIwa7JnPCPk3VPzDOYP8ponkzxhusBxwP7hW/tylJNgN+0UZBVCqjFCAqTGZfJ7k9gjeIMvnTRdLW81khOLn3yUDISLq0MLZWiHehVQjFODz33feYFx/Sl8M7ubf8dlMwbl4MTO7QakZVqtFfxsRk99LcWpNDqp6dEnCsrvPQLawxUWwqbFgAtUImWngOLUwH4B677W/XDoMY/pmYubp/UPOmohZHPm5eUKPofRE9eosuW+RvGzfHWTVWI1B/yEtq8WirBqbNFi/Li6eMkIsliaiDkfbsbejCfbXtNnd5687pZ/hY+rXM1p63vI+aYmRvZy47DY0edQ1KeHUCGmnt1T70MlTY2FelAMFUIG2A5GN7N0Fi++ciG5CsHLZqJ5KH6oKkxkYvfHIgZjTbsWjFwzBkepGLP+5DKv2HFWOSXbZcaS6UZkaq2v0oL554+PWtEEQp8ZumtgPP/xSjlJNL6N4yggxECIiameC/TVtNhAyy+iCL97dKwK1QSKX3Ypq9bXTdHfoQEv47Tb/TFewWiAjAYulTZ73vtn6PYB8rx/a986pkxECgN+O6wMAWLdvpep4eUpM/r+8CSpgXLBuhgUWZSNap838isNY4dQYEXU42Sltu1lsWwuWGDGzfD4URhf8I1Ut/WgC1aKEQ69GJZyMkFfTdVnMRMjvYSbg0KtbClgsHYEp2VC/d8G+79p2APLUmF6fqNZ0e7YIGSG9fcRsVktcTVkzECKiDmdM30zcPmkgiq4cEeuhxIS60DkSgZD+axRX1re8TxSbC8rMBhfi59d2fdarfQqU2Zky1LeJ7g2n+k8jBqoRish5D3GJuRi86J0rceWcxQIkNAdAepvLtmZHeI9XUoql9V4nnrJBAKfGiKgDslgsuHXSgFgPI2qC1UAZTZGEKxYtCPSmZsJpPaMNhMQVcHKAF+jzFV05ApX1bqzYVeb3WKAAamy/THy04WCow1WxWi2qxozBBAtexCnDBLtNqY3SrhoEWpcR8nilloyQXiaNgRAREUWTePGJxAyEdrWRlnbT20jQ6yUUznSTNogINSNksViQnujQzVAFet5vTuqNk/plYWzfzBBHrHkPqzVoTx6ZGLzo7X8mTo0lOKzKuUjSmRprTbG02yspnaVddiu0I2FGiIiIIuq4HHXBrTiVZTaboOe+8wZj4dYS/Oak3gGPG9WndRd7PbpTKmEEQh7NCRDPjfweZqag9DIkgQIhp82KK8b0MjtMQ3abBSZXraunBHW+8epGkzYlExbpGqFGt1cJxBw2q9/PYKSnUVuLgRARUXsjxAMfzxqPfjkpqofFC6K2WDgU153SL+AS+7nXjMZ/Vu7DnIuHhv0eRlqbEeqWnoBDFfU48/iuqvv1MkJmpv70MiRGHbe179MaobyOWJfk1ckIuTQZobML8rDpQCVOG5CDl5fu0ryWcXfvUb0zkZpgx5HqBmz8pcLvmLqmlsjNabf61ZgxI0RERK0iZkaG9cjwe1wMhNISIj9tJZs4qCsmDuoa/MAw6NUIWUJIJCy64zSUVTf6bfmhqhGyB95iQ6S3DDxgH6EIrYrSvsejFwwxPFa1aavu1JhQI+Sw4cITu+PCE7ujQmcTVqMkWbLTjnduHAcAuKBome4xdUIKy2Gz4vkrT8QlLy5X7ounHkIAAyEionZn3HFZKOyRjoG5qbqP26wWvHXDSahr8qBLcvtsJaCXgQllaizJaUdSpv8lTr9GqOW+cf2ysHxXGTI0dU96WaOAW2xEqMBcHO+nN0/ACd3TTT1PLyOktwcboB/0GGWEXDp7tmmJGSGHzYKRvTOx/J4zMG7O1wCYESIiolZy2Kz4aNaEgMec1C+rjUYTHa3pIxSIXadGSLzo33xGf1w0ojtOGZCtep7exbtNMkI6fY/M0KsREoulxYBGL+gxilUCNauU1Tb6GjM6bVYlSxXpJp+RxECIiIjijl5GKBKxhV0vIyS8l8thU7a4EOkFNoGWq0fqYi8WFocSXOmvGmt5LXGlmF7yx6jhobYpox55akwM3MTzHqkgMVLiq3SbiIgI+jVCkQgubKo+QvKqMfEirf88/c7S0W2oqH2dUF5SNxASzumpA3KUr0OZclQFqAaF+PLUmFGna6k1SxmjgIGQjqKiIhQUFGD06NGxHgoRUafUms7SgYiBhV2noaLRe/TMTMTZBeqd1Fu76aoZ9jC3S9GbGhPvuWREj7Be11RGqMk/I2SmID1W4ndkMTRz5kxs2bIFq1evjvVQiIg6Jf0aoda/rk0ILOSCaDP1KxaLBX+/ehRuPqO/cl/ATVcjNP0jZrBCCQT1ki6nD+qKM47vikcvPAHpQjF4KPt+makRqmv07yodb3VBIgZCREQUd3SXz0cguBCnwfLSEnz3hdmJO9BmrZG68Ivv0dqPn+i04bUZo/HbAA0yx/bNxNxrjGdDxOm1ayf0BQCcNjBHdUydXCwtbvUSZ3VBIhZLExFR3NFrqBgJYoYltzkQEqfLQglgAh0bsWLpMMcWrmsn9A3YG0qcGju/MB+Du6WhT1YyBt73uXK/MjUmFnrHcUaIgRAREcWd1ux1FYgkVMrIgZAjyK7tRgIdG6kMiD3MqbFwDc5LC/i4GKBaLBbdXlZynXZrtuloSwyEiIgo7kTrIloudFHOam42aWbVmEysvQkU7CQ4IzN+M4XckfDV7afiWG0TemUlBTzOTLG0LJ4LpEUMhIiIKO7o1QhFwpHqBuVrebom3F49Roee1C8zYuO3hbl8PlQDDLqUa4WSqTPqsxRfi+dZLE1ERHEoWlNjR6oa/O5zhB0IWXSDkz9OKQhrbHpscdaIMKSMEKfGiIiIwhO1QKim0e8+Ryumn6wWC7zN82XTx/XGb8f1Qf+uKa0bpOb1la/joOA4IYRMV6DO2/GkfYySiIg6lWjVCJ3S37eH2OBuLUXBqu7NQd5W0kzsiMFJfkZiRIMgQD0dFgdxUEhjiFYwG2nMCBERUdyJVo3Q/106DO+u+QWXjOyu3BfuqjHf8S1fR2N5u9g7KR6aEurs3GHIqM9SnO2wwUCIiIjiT4orOpen7BQXbpp4nOo+h9V8B2QL1I/bohyoqDNCsQ+E9LbuMNJels+3j1ESEVGnMiQ/Ddc1dy6ONnsI3ZsDTY1FaqNV1etbzI+tLXhDSAm1l+Xz7WOURETUqVitFtz3qwJ0S0+I+nuFu3xee7wtWIFRGMRAy0yTxq6proiPQRSJjJA2mIw1BkJERBS32iIJYg8x2BDZ2jAjZCZI++e1Y3BSv0y8d+O4iI8FiEwfoXjDGiEiIopbkdhoNZhQgo30RIfqdrSLpVU1QiZef3C3NLx1Q+SDoHvOPR6f/nAI14w3P11plBHS1lnFWvsI14iIiKJEDGAsQa6Kvz2pDyYN7or/u2QoAHXgZA+wG3244qFAGgD+57Tj8MnNE/wCQdlbN5yE4/PU3alZI0RERNQOiNfrYFNjiU4bXpk+GtNG9wKgrRGKxvL5iL9kVJzULwsv/mak6j7WCBEREbVSWwQCodbhiMTgJ5Suy6Zfv71EQvCvkWJGiIiIqB1Qb2MR2nPFOCXRGflAKF6mxszQZsTYR4iIiKiV2iIOsLdiY1NVRsgRjeXzEX/JqNFmhJztpLN0OzrFRETU2bTFCiNrKwIh8fhQdmY3qy1WzUUKM0JEREQR1vY1QqE+t+XraARCcbC9mGl2TfqKNUJERESt1BZxgGr5fCsyQolRCITaU7G0zaadGtMPMaLd/TpUDISIiKhTC6VbspYlyhmhWE6NndQvEwAwrEe6qeP9Vo1pzuubvxuL8f2z8LdpwyMyvkhhZ2kiIopbbREIDMlPw5nHd0VeGPuaNbq9ytdRKZaOYSBUdOUIvLv2F1w8orup47U1Qi5NRmjCgGxMGJAdsfFFCgMhIiKKW20RBlgsFrw6Y3RYz23ytCyBikYfoVjWCGWluHDjaceZPl47jafNCMWr9jFKIiLqnOK8RKZByAiZ2QssVNF4zWixWi2qwK29bLraPkZJRESdUryHAY1uT1Rfvz01VATUK8e4aoyIiKiV4r2PTqPHG/ygVmhHCSEA6gaQ7CNERETUwYnF0tHQnjNCnBojIiJqpXgPA7xR3i6ivWWEqhvcytfpiY4YjsQ8BkJERERxKislvpoPhiI9qX0EQlw+T0REcaudzQxF3OVjemLN3mOYODAn1kMJSaHJJozxgIEQERHFrbbYdDWeuew2PHfFibEeRsiG98yI9RBM49QYERHFrc6eEWpvzhmShxSXHTdONN+IMdaYESIiorh1Qvd0/FRcFethkEkvXDUCjR5vVPZdi5YOnxHav38/Jk6ciIKCAgwbNgzvvvturIdEREQm3f+rAtxwaj/Mv2VCrIcSEDNXPlarpV0FQUAnyAjZ7XY8/fTTGD58OIqLizFy5EhMmTIFycnJsR4aEREFkZ7owL1TBsd6GEG1l5455K/DB0LdunVDt27dAAB5eXnIzs7G0aNHGQgREVHEtJcuyuQv5t+5b775BlOnTkV+fj4sFgvmzZvnd0xRURH69OmDhIQEjB07FqtWrQrrvdauXQuPx4OePXu2ctREREQtmBFqv2L+naupqUFhYSGKiop0H3/77bcxe/ZsPPjgg1i3bh0KCwsxefJklJaWKscMHz4cJ5xwgt9/Bw8eVI45evQorr76avz973+P+mciIqLOpb10USZ/FkmSotwg3DyLxYIPP/wQF154oXLf2LFjMXr0aDz//PMAAK/Xi549e+Lmm2/G3Xffbep1GxoacNZZZ+H666/Hb3/724DHNTQ0KLcrKyvRs2dPVFRUIC0tLbwPRUREHdYnGw/irwu24cWrRqIgn9eJeFFZWYn09HRT1++YZ4QCaWxsxNq1azFp0iTlPqvVikmTJmH58uWmXkOSJMyYMQNnnHFGwCAIAObMmYP09HTlP06hERFRIFML87H0rtMZBLVjcR0IHTlyBB6PB7m5uar7c3NzUVxcbOo1li1bhrfffhvz5s3D8OHDMXz4cPz444+6x95zzz2oqKhQ/tu/f3+rPwMRERHFrw6/amzChAnwer2mjnW5XHC52u8Gd0RERBSauM4IZWdnw2azoaSkRHV/SUkJ8vLyYjQqIiIi6ijiOhByOp0YOXIkFi1apNzn9XqxaNEijBs3LoYjIyIioo4g5lNj1dXV2Llzp3J79+7d2LBhAzIzM9GrVy/Mnj0b06dPx6hRozBmzBg8/fTTqKmpwTXXXBPDURMREVFHEPNAaM2aNTj99NOV27NnzwYATJ8+HXPnzsW0adNw+PBhPPDAAyguLsbw4cPxxRdf+BVQExEREYUqrvoIxYuioiIUFRXB4/Fg+/bt7CNERETUjoTSR4iBUAChnEgiIiKKDx2moSIRERFRNDEQIiIiok6LgRARERF1WgyEiIiIqNNiIERERESdFgMhHUVFRSgoKMDo0aNjPRQiIiKKIi6fD6CiogIZGRnYv38/l88TERG1E5WVlejZsyfKy8uRnp4e8NiYd5aOZ1VVVQCAnj17xngkREREFKqqqqqggRAzQgF4vV4cPHgQqampsFgsEX1tOVpltim6eJ7bDs912+B5bhs8z20nGudakiRUVVUhPz8fVmvgKiBmhAKwWq3o0aNHVN8jLS2N/8jaAM9z2+G5bhs8z22D57ntRPpcB8sEyVgsTURERJ0WAyEiIiLqtBgIxYjL5cKDDz4Il8sV66F0aDzPbYfnum3wPLcNnue2E+tzzWJpIiIi6rSYESIiIqJOi4EQERERdVoMhIiIiKjTYiBEREREnRYDoRgpKipCnz59kJCQgLFjx2LVqlWxHlK78s0332Dq1KnIz8+HxWLBvHnzVI9LkoQHHngA3bp1Q2JiIiZNmoQdO3aojjl69CiuuuoqpKWlISMjA7/73e9QXV3dhp8i/s2ZMwejR49GamoqunbtigsvvBDbtm1THVNfX4+ZM2ciKysLKSkpuOSSS1BSUqI6Zt++fTjvvPOQlJSErl274q677oLb7W7LjxLXXnzxRQwbNkxpKDdu3Dh8/vnnyuM8x9Hx+OOPw2Kx4LbbblPu47mOjIceeggWi0X13/HHH688HlfnWaI299Zbb0lOp1N67bXXpM2bN0vXX3+9lJGRIZWUlMR6aO3GZ599Jv3xj3+UPvjgAwmA9OGHH6oef/zxx6X09HRp3rx50saNG6Xzzz9f6tu3r1RXV6ccc84550iFhYXSihUrpG+//Vbq37+/dMUVV7TxJ4lvkydPll5//XVp06ZN0oYNG6QpU6ZIvXr1kqqrq5VjbrzxRqlnz57SokWLpDVr1kgnnXSSdPLJJyuPu91u6YQTTpAmTZokrV+/Xvrss8+k7Oxs6Z577onFR4pLH3/8sTR//nxp+/bt0rZt26R7771Xcjgc0qZNmyRJ4jmOhlWrVkl9+vSRhg0bJt16663K/TzXkfHggw9KQ4YMkQ4dOqT8d/jwYeXxeDrPDIRiYMyYMdLMmTOV2x6PR8rPz5fmzJkTw1G1X9pAyOv1Snl5edITTzyh3FdeXi65XC7pv//9ryRJkrRlyxYJgLR69WrlmM8//1yyWCzSgQMH2mzs7U1paakEQFq6dKkkSb7z6nA4pHfffVc5ZuvWrRIAafny5ZIk+YJWq9UqFRcXK8e8+OKLUlpamtTQ0NC2H6Ad6dKli/TKK6/wHEdBVVWVNGDAAOmrr76STjvtNCUQ4rmOnAcffFAqLCzUfSzezjOnxtpYY2Mj1q5di0mTJin3Wa1WTJo0CcuXL4/hyDqO3bt3o7i4WHWO09PTMXbsWOUcL1++HBkZGRg1apRyzKRJk2C1WrFy5co2H3N7UVFRAQDIzMwEAKxduxZNTU2qc3388cejV69eqnM9dOhQ5ObmKsdMnjwZlZWV2Lx5cxuOvn3weDx46623UFNTg3HjxvEcR8HMmTNx3nnnqc4pwJ/nSNuxYwfy8/PRr18/XHXVVdi3bx+A+DvP3HS1jR05cgQej0f1zQWA3Nxc/PTTTzEaVcdSXFwMALrnWH6suLgYXbt2VT1ut9uRmZmpHENqXq8Xt912G8aPH48TTjgBgO88Op1OZGRkqI7Vnmu974X8GPn8+OOPGDduHOrr65GSkoIPP/wQBQUF2LBhA89xBL311ltYt24dVq9e7fcYf54jZ+zYsZg7dy4GDRqEQ4cO4eGHH8Ypp5yCTZs2xd15ZiBERKbMnDkTmzZtwnfffRfroXRIgwYNwoYNG1BRUYH33nsP06dPx9KlS2M9rA5l//79uPXWW/HVV18hISEh1sPp0M4991zl62HDhmHs2LHo3bs33nnnHSQmJsZwZP44NdbGsrOzYbPZ/KrjS0pKkJeXF6NRdSzyeQx0jvPy8lBaWqp63O124+jRo/w+6Jg1axY+/fRTLF68GD169FDuz8vLQ2NjI8rLy1XHa8+13vdCfox8nE4n+vfvj5EjR2LOnDkoLCzEM888w3McQWvXrkVpaSlGjBgBu90Ou92OpUuX4tlnn4Xdbkdubi7PdZRkZGRg4MCB2LlzZ9z9TDMQamNOpxMjR47EokWLlPu8Xi8WLVqEcePGxXBkHUffvn2Rl5enOseVlZVYuXKlco7HjRuH8vJyrF27Vjnm66+/htfrxdixY9t8zPFKkiTMmjULH374Ib7++mv07dtX9fjIkSPhcDhU53rbtm3Yt2+f6lz/+OOPqsDzq6++QlpaGgoKCtrmg7RDXq8XDQ0NPMcRdOaZZ+LHH3/Ehg0blP9GjRqFq666Svma5zo6qqur8fPPP6Nbt27x9zMd0dJrMuWtt96SXC6XNHfuXGnLli3SDTfcIGVkZKiq4ymwqqoqaf369dL69eslANJTTz0lrV+/Xtq7d68kSb7l8xkZGdJHH30k/fDDD9IFF1ygu3z+xBNPlFauXCl999130oABA7h8XuOmm26S0tPTpSVLlqiWwdbW1irH3HjjjVKvXr2kr7/+WlqzZo00btw4ady4ccrj8jLYs88+W9qwYYP0xRdfSDk5OVxuLLj77rulpUuXSrt375Z++OEH6e6775YsFou0YMECSZJ4jqNJXDUmSTzXkXLHHXdIS5YskXbv3i0tW7ZMmjRpkpSdnS2VlpZKkhRf55mBUIw899xzUq9evSSn0ymNGTNGWrFiRayH1K4sXrxYAuD33/Tp0yVJ8i2hv//++6Xc3FzJ5XJJZ555prRt2zbVa5SVlUlXXHGFlJKSIqWlpUnXXHONVFVVFYNPE7/0zjEA6fXXX1eOqaurk37/+99LXbp0kZKSkqSLLrpIOnTokOp19uzZI5177rlSYmKilJ2dLd1xxx1SU1NTG3+a+HXttddKvXv3lpxOp5STkyOdeeaZShAkSTzH0aQNhHiuI2PatGlSt27dJKfTKXXv3l2aNm2atHPnTuXxeDrPFkmSpMjmmIiIiIjaB9YIERERUafFQIiIiIg6LQZCRERE1GkxECIiIqJOi4EQERERdVoMhIiIiKjTYiBEREREnRYDISKiECxZsgQWi8VvnyQiap8YCBEREVGnxUCIiIiIOi0GQkTUrni9XsyZMwd9+/ZFYmIiCgsL8d577wFombaaP38+hg0bhoSEBJx00knYtGmT6jXef/99DBkyBC6XC3369MGTTz6peryhoQH/+7//i549e8LlcqF///549dVXVcesXbsWo0aNQlJSEk4++WRs27Ytuh+ciKKCgRARtStz5szBG2+8gZdeegmbN2/G7bffjt/85jdYunSpcsxdd92FJ598EqtXr0ZOTg6mTp2KpqYmAL4A5rLLLsPll1+OH3/8EQ899BDuv/9+zJ07V3n+1Vdfjf/+97949tlnsXXrVrz88stISUlRjeOPf/wjnnzySaxZswZ2ux3XXnttm3x+IoosbrpKRO1GQ0MDMjMzsXDhQowbN065/7rrrkNtbS1uuOEGnH766Xjrrbcwbdo0AMDRo0fRo0cPzJ07F5dddhmuuuoqHD58GAsWLFCe/4c//AHz58/H5s2bsX37dgwaNAhfffUVJk2a5DeGJUuW4PTTT8fChQtx5plnAgA+++wznHfeeairq0NCQkKUzwIRRRIzQkTUbuzcuRO1tbU466yzkJKSovz3xhtv4Oeff1aOE4OkzMxMDBo0CFu3bgUAbN26FePHj1e97vjx47Fjxw54PB5s2LABNpsNp512WsCxDBs2TPm6W7duAIDS0tJWf0Yialv2WA+AiMis6upqAMD8+fPRvXt31WMul0sVDIUrMTHR1HEOh0P52mKxAPDVLxFR+8KMEBG1GwUFBXC5XNi3bx/69++v+q9nz57KcStWrFC+PnbsGLZv347BgwcDAAYPHoxly5apXnfZsmUYOHAgbDYbhg4dCq/Xq6o5IqKOixkhImo3UlNTceedd+L222+H1+vFhAkTUFFRgWXLliEtLQ29e/cGADzyyCPIyspCbm4u/vjHPyI7OxsXXnghAOCOO+7A6NGj8eijj2LatGlYvnw5nn/+ebzwwgsAgD59+mD69Om49tpr8eyzz6KwsBB79+5FaWkpLrvsslh9dCKKEgZCRNSuPProo8jJycGcOXOwa9cuZGRkYMSIEbj33nuVqanHH38ct956K3bs2IHhw4fjk08+gdPpBACMGDEC77zzDh544AE8+uij6NatGx555BHMmDFDeY8XX3wR9957L37/+9+jrKwMvXr1wr333huLj0tEUcZVY0TUYcgruo4dO4aMjIxYD4eI2gHWCBEREVGnxUCIiIiIOi1OjREREVGnxYwQERERdVoMhIiIiKjTYiBEREREnRYDISIiIuq0GAgRERFRp8VAiIiIiDotBkJERETUaTEQIiIiok6LgRARERF1Wv8PrQdh01wygj4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMA0lEQVR4nO3dd3wUdf4/8NdsTw8hEHovgkKoIsUKir2cnthO0FN/elhR76venfVOvKJni+XOU84r9npiR4og0gRFOkiHEFp62ezu/P7YzOxnZmdmZ5NNdpO8no+HD5Otn51ddt55f96f90eSZVkGERERUTvkSPYAiIiIiJKFgRARERG1WwyEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG7xUCIiIiI2i0GQkRERNRuMRAiIiKidouBEBG1KTt27IAkSZgzZ07c912wYAEkScKCBQssbzdnzhxIkoQdO3Y0aoxElDoYCBEREVG7xUCIiIiI2i0GQkRERNRuMRAiooR68MEHIUkSNm/ejKuuugo5OTno1KkTfve730GWZezevRsXXHABsrOz0aVLFzz++ONRj1FSUoJf/vKXKCgogM/nQ2FhIf75z39G3a60tBQzZsxATk4OcnNzMX36dJSWlhqOa+PGjbjkkkuQl5cHn8+HMWPG4MMPP0zoa3/uuedw7LHHwuv1olu3bpg5c2bUeLZs2YKLL74YXbp0gc/nQ48ePXDZZZehrKxMvc0XX3yBSZMmITc3F5mZmRg8eDDuu+++hI6ViMJcyR4AEbVN06ZNw5AhQ/DYY49h7ty5+P3vf4+8vDy8+OKLOO200/DHP/4R//nPf3DXXXdh7NixOOmkkwAANTU1OOWUU7B161bcfPPN6Nu3L9566y3MmDEDpaWluO222wAAsizjggsuwOLFi3HjjTdiyJAheO+99zB9+vSosaxbtw4TJ05E9+7dcc899yAjIwNvvvkmLrzwQrzzzju46KKLmvx6H3zwQTz00EOYMmUKbrrpJmzatAnPP/88VqxYgSVLlsDtdsPv92Pq1Kmoq6vDLbfcgi5dumDv3r346KOPUFpaipycHKxbtw7nnnsuhg8fjocffhherxdbt27FkiVLmjxGIjIgExEl0AMPPCADkG+44Qb1skAgIPfo0UOWJEl+7LHH1MuPHj0qp6WlydOnT1cve/LJJ2UA8r///W/1Mr/fL48fP17OzMyUy8vLZVmW5ffff18GIP/pT3/SPM+JJ54oA5BfeeUV9fLJkyfLw4YNk2tra9XLQqGQPGHCBHngwIHqZfPnz5cByPPnz7d8ja+88ooMQN6+fbssy7JcUlIiezwe+YwzzpCDwaB6u2effVYGIL/88suyLMvy6tWrZQDyW2+9ZfrYf/3rX2UA8sGDBy3HQESJwakxImoW1113nfqz0+nEmDFjIMsyfvnLX6qX5+bmYvDgwfjpp5/Uyz7++GN06dIFl19+uXqZ2+3GrbfeisrKSixcuFC9ncvlwk033aR5nltuuUUzjiNHjuCrr77CpZdeioqKChw6dAiHDh3C4cOHMXXqVGzZsgV79+5t0mv98ssv4ff7cfvtt8PhiHytXn/99cjOzsbcuXMBADk5OQCAzz77DNXV1YaPlZubCwD44IMPEAqFmjQuIoqNgRARNYtevXppfs/JyYHP50N+fn7U5UePHlV/37lzJwYOHKgJKABgyJAh6vXK/7t27YrMzEzN7QYPHqz5fevWrZBlGb/73e/QqVMnzX8PPPAAgHBNUlMoY9I/t8fjQb9+/dTr+/bti1mzZuGll15Cfn4+pk6diqKiIk190LRp0zBx4kRcd911KCgowGWXXYY333yTQRFRM2GNEBE1C6fTaesyIFzv01yUAOKuu+7C1KlTDW8zYMCAZnt+vccffxwzZszABx98gM8//xy33norZs+ejW+//RY9evRAWloaFi1ahPnz52Pu3Ln49NNP8cYbb+C0007D559/bnoMiahxmBEiopTSu3dvbNmyJSoDsnHjRvV65f/79+9HZWWl5nabNm3S/N6vXz8A4em1KVOmGP6XlZXV5DEbPbff78f27dvV6xXDhg3Db3/7WyxatAhff/019u7dixdeeEG93uFwYPLkyXjiiSewfv16/OEPf8BXX32F+fPnN2mcRBSNgRARpZSzzz4bxcXFeOONN9TLAoEAnnnmGWRmZuLkk09WbxcIBPD888+rtwsGg3jmmWc0j9e5c2eccsopePHFF7F///6o5zt48GCTxzxlyhR4PB48/fTTmuzWP/7xD5SVleGcc84BAJSXlyMQCGjuO2zYMDgcDtTV1QEI1zTpjRgxAgDU2xBR4nBqjIhSyg033IAXX3wRM2bMwKpVq9CnTx+8/fbbWLJkCZ588kk1e3Peeedh4sSJuOeee7Bjxw4MHToU7777rqbeRlFUVIRJkyZh2LBhuP7669GvXz8cOHAAS5cuxZ49e/D99983acydOnXCvffei4ceeghnnnkmzj//fGzatAnPPfccxo4di6uuugoA8NVXX+Hmm2/Gz3/+cwwaNAiBQAD/+te/4HQ6cfHFFwMAHn74YSxatAjnnHMOevfujZKSEjz33HPo0aMHJk2a1KRxElE0BkJElFLS0tKwYMEC3HPPPfjnP/+J8vJyDB48GK+88gpmzJih3s7hcODDDz/E7bffjn//+9+QJAnnn38+Hn/8cYwcOVLzmEOHDsXKlSvx0EMPYc6cOTh8+DA6d+6MkSNH4v7770/IuB988EF06tQJzz77LO644w7k5eXhhhtuwKOPPgq32w0AKCwsxNSpU/G///0Pe/fuRXp6OgoLC/HJJ5/ghBNOAACcf/752LFjB15++WUcOnQI+fn5OPnkk/HQQw+pq86IKHEkuTmrFImIiIhSGGuEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG7xUCIiIiI2i0GQkRERNRusY+QhVAohH379iErKwuSJCV7OERERGSDLMuoqKhAt27dojZw1mMgZGHfvn3o2bNnsodBREREjbB792706NHD8jYMhCworfx3796N7OzsJI+GiIiI7CgvL0fPnj1tbajMQMiCMh2WnZ3NQIiIiKiVsVPWwmJpIiIiarcYCBEREVG7xUCIiIiI2i3WCCVAMBhEfX19sofRKrndbjidzmQPg4iI2ikGQk0gyzKKi4tRWlqa7KG0arm5uejSpQt7NRERUYtjINQEShDUuXNnpKen80QeJ1mWUV1djZKSEgBA165dkzwiIiJqbxgINVIwGFSDoI4dOyZ7OK1WWloaAKCkpASdO3fmNBkREbUoFks3klITlJ6enuSRtH7KMWSdFRERtTQGQk3E6bCm4zEkIqJkYSBERERE7RYDIWqSPn364Mknn0z2MIiIiBqFxdLt0CmnnIIRI0YkJIBZsWIFMjIymj4oIiKiJGAglASyLCMQkhEMyfC5U2+VlCzLCAaDcLlifzw6derUAiMiIiJqHpwaS4KgLGPD/nJsPlCBkCy36HPPmDEDCxcuxFNPPQVJkiBJEubMmQNJkvDJJ59g9OjR8Hq9WLx4MbZt24YLLrgABQUFyMzMxNixY/Hll19qHk8/NSZJEl566SVcdNFFSE9Px8CBA/Hhhx+26GskIiKyi4FQAsmyjGp/IOZ/dfVB1Db8V1lbb+s+sf6TbQZUTz31FMaPH4/rr78e+/fvx/79+9GzZ08AwD333IPHHnsMGzZswPDhw1FZWYmzzz4b8+bNw+rVq3HmmWfivPPOw65duyyf46GHHsKll16KH374AWeffTauvPJKHDlypMnHl4iIKNE4NZZANfVBDL3/s6Q89/qHpyLdE/vtzMnJgcfjQXp6Orp06QIA2LhxIwDg4Ycfxumnn67eNi8vD4WFhervjzzyCN577z18+OGHuPnmm02fY8aMGbj88ssBAI8++iiefvppLF++HGeeeWajXhsREVFzYUaIVGPGjNH8XllZibvuugtDhgxBbm4uMjMzsWHDhpgZoeHDh6s/Z2RkIDs7W91Gg4iIKJUwI5RAaW4n1j881dZttxyoRF0giD75Gcj0Nv1tSEtA0bV+9dddd92FL774An/5y18wYMAApKWl4ZJLLoHf77d8HLfbrfldkiSEQqEmj4+IiCjRGAglkCRJtqanACDD64IkAT6X0/Z9EsXj8SAYDMa83ZIlSzBjxgxcdNFFAMIZoh07djTz6IiIiFoOp8aSxNGwq0RLrxoDwiu9li1bhh07duDQoUOm2ZqBAwfi3XffxZo1a/D999/jiiuuYGaHiIjaFAZCBoqKijB06FCMHTu22Z7D2RAJBUMtHwjdddddcDqdGDp0KDp16mRa8/PEE0+gQ4cOmDBhAs477zxMnToVo0aNauHREhERNR9Jtrvuuh0qLy9HTk4OysrKkJ2drbmutrYW27dvR9++feHz+eJ+7N1HqnG02o8uOT50zor//m1JU48lERGRyOr8rceMUJIoGSHONBERESUPA6EkcUgNgRATckREREnDQChJnA1HPhk1QkRERBTGQChJmBEiIiJKPgZCTdTYWvNkrhpLNazXJyKiZGEg1EhK9+Tq6upG3V/JCAUZBKjHUN+RmoiIqLmxs3QjOZ1O5ObmqntopaenQ2oIbuwI1AcgB/wIyE7U1tY21zBTmizLqK6uRklJCXJzc+F0Nn2bECIiongwEGoCZff2xmwoWh8MoaS8LjxFVtm+e+fk5uaqx5KIiKglMRBqAkmS0LVrV3Tu3Bn19fVx3Xff0Rrc9MEyeF1OfHzbic00wtTndruZCSIioqRhIJQATqcz7pN5ZiawtyIISQrC6/XGNa1GREREicFi6SRJc4cDJ1kG/EG2lyYiIkoGBkJJ4nNHMki1fgZCREREycBAKEncTgdcDb2EagPBJI+GiIiofWIglERKVqjGz0CIiIgoGRgIJZESCDEjRERElBwMhJLI5w4ffmaEiIiIkoOBUBIpK8dq61ksTURElAwMhJJInRqrZ0aIiIgoGRgIJVEaAyEiIqKkYiCURF6lRoiBEBERUVIwEEoiJSPEQIiIiCg5GAglkY/F0kREREnFQCiJWCNERESUXAyEkkjpI8RAiIiIKDkYCCWRz8MtNoiIiJKJgVAS+VzcYoOIiCiZGAglUZqaEWKxNBERUTIwEEoin6uhRogZISIioqRgIJRESkaoljVCREREScFAKInUPkLMCBERESUFA6EkUgIhrhojIiJKDgZCScTO0kRERMnFQCiJuNcYERFRcjEQSqL0hmLpqrpAkkdCRETUPrX5QOijjz7C4MGDMXDgQLz00kvJHo5GptcFgIEQERFRsriSPYDmFAgEMGvWLMyfPx85OTkYPXo0LrroInTs2DHZQwMAZPoaAiF/EKGQDIdDSvKIiIiI2pc2nRFavnw5jj32WHTv3h2ZmZk466yz8Pnnnyd7WColIwQAVX5mhYiIiFpaSgdCixYtwnnnnYdu3bpBkiS8//77UbcpKipCnz594PP5MG7cOCxfvly9bt++fejevbv6e/fu3bF3796WGLotXpcDroYsUFUdC6aJiIhaWkoHQlVVVSgsLERRUZHh9W+88QZmzZqFBx54AN999x0KCwsxdepUlJSUtPBIG0eSJGQ0ZIUq6+qTPBoiIqL2J6UDobPOOgu///3vcdFFFxle/8QTT+D666/HNddcg6FDh+KFF15Aeno6Xn75ZQBAt27dNBmgvXv3olu3bqbPV1dXh/Lycs1/zS1TDYSYESIiImppKR0IWfH7/Vi1ahWmTJmiXuZwODBlyhQsXboUAHD88cfjxx9/xN69e1FZWYlPPvkEU6dONX3M2bNnIycnR/2vZ8+ezf461EColjVCRERELa3VBkKHDh1CMBhEQUGB5vKCggIUFxcDAFwuFx5//HGceuqpGDFiBO68807LFWP33nsvysrK1P92797drK8BADK84V5ClVxCT0RE1OLa9PJ5ADj//PNx/vnn27qt1+uF1+tt5hFpZfrcANhLiIiIKBlabUYoPz8fTqcTBw4c0Fx+4MABdOnSJUmjil8mM0JERERJ02oDIY/Hg9GjR2PevHnqZaFQCPPmzcP48eOTOLL4RIqlGQgRERG1tJSeGqusrMTWrVvV37dv3441a9YgLy8PvXr1wqxZszB9+nSMGTMGxx9/PJ588klUVVXhmmuuSeKo45PBQIiIiChpUjoQWrlyJU499VT191mzZgEApk+fjjlz5mDatGk4ePAg7r//fhQXF2PEiBH49NNPowqoU1kW9xsjIiJKmpQOhE455RTIsmx5m5tvvhk333xzQp+3qKgIRUVFCAabv7cPM0JERETJ02prhJrTzJkzsX79eqxYsaLZnyuDfYSIiIiShoFQkmX5mBEiIiJKFgZCSZadFu4jVF7LvcaIiIhaGgOhJMtL9wAAjlYxECIiImppDISSLC8jHAgdrqpL8kiIiIjaHwZCSdahIRCqrQ+hxs8d6ImIiFoSAyEDRUVFGDp0KMaOHdvsz5XhccLjDL8NR6r9zf58REREFMFAyEBLLp+XJAkdMsIF00erGAgRERG1JAZCKaBDQ8H0EQZCRERELYqBUApQCqaPcmqMiIioRTEQSgFKwTQzQkRERC2LgVAKiPQSYiBERETUkhgIpQA1I8SpMSIiohbFQCgFdGwIhErK2VSRiIioJTEQMtCSfYQAoF+nDADA1oOVLfJ8REREFMZAyEBL9hECgIGdswAAOw9Xoy7A7tJEREQthYFQCijI9iLL50IwJGP7oapkD4eIiKjdYCCUAiRJwsDOmQCAzQc4PUZERNRSGAiliEEF4emxLQcqkjwSIiKi9oOBUIro3ymcEfqJU2NEREQthoFQiuiTH145toOBEBERUYthIJQi+uanAwgHQrIsJ3k0RERE7QMDoRTRMy8dDgmo8gdxsIKNFYmIiFoCAyEDLd1QEQC8Lie6d0gDAC6hJyIiaiEMhAy0dENFRZ+ODXVChxkIERERtQQGQilE6TD9497yJI+EiIiofWAglELG9OkAAFix40iSR0JERNQ+MBBKIUogtOlABcpq6pM8GiIioraPgVAK6ZzlQ5+O6ZBl4LtdR5M9HCIiojaPgVCKGdI1GwCwkyvHiIiImh0DoRSTn+kFAByq9Cd5JERERG0fA6EUEwmE2FSRiIiouTEQSjH5WR4ADISIiIhaAgOhFNOpISN0kFNjREREzY6BkIFkbLGhyM9qmBrjfmNERETNjoGQgWRtsQFEMkKHKuu4Cz0REVEzYyCUYpRi6bpACJV1gSSPhoiIqG1jIJRi0jxOZHicALiEnoiIqLkxEEpBSp3QQdYJERERNSsGQimoT8cMAMCG/dyFnoiIqDkxEEpBY3qHN19duZP7jRERETUnBkIpaHTDLvQrth/hyjEiIqJmxEAoBY3omQuXQ0JxeS32ldUmezhERERtFgOhFJTucaF7hzQAwL7SmiSPhoiIqO1iIJSiOqSH9xw7UsUl9ERERM2FgVCK6pjBQIiIiKi5MRBKUXkMhIiIiJodA6EUxUCIiIio+TEQMpDM3ecVDISIiIiaHwMhA8ncfV7RQQiEVuw4gt1HqpM2FiIiorbKlewBkDGlWHrh5oNYuPkgjumShU9vPynJoyIiImpbmBFKUcrUmGJjcQUCwVCSRkNERNQ2MRBKUfpACAD2s8s0ERFRQjEQSlFGgdBedpkmIiJKKAZCKSrT68LQrtnomZeGET1zAQB7jjIQIiIiSiQGQilKkiT875ZJ+OKOkzG4IAsAsPtINb7echA1/mCSR0dERNQ2cNVYCnM6JDgdTvRo2ID1qXlbAABXndALv79wWDKHRkRE1CYwI9QKKDvRK/797a4kjYSIiKhtYSDUChzXPSfqMlmWkzASIiKitoWBUCswqKFGSHSwsi4JIyEiImpbGAi1ErecNkDz+5YDlUkaCRERUdvBQKiVuG3yQMz+2TAc1z0bALCpuCLJIyIiImr9GAi1Ei6nA5cf3wtnDO0CAFi182iSR0RERNT6MRBqZSb07wgA+GbbIYRCLJgmIiJqCgZCrUxhz1xkeJw4Wl2P9fvLkz0cIiKiVo2BkIGioiIMHToUY8eOTfZQoridDozrF8kKERERUeMxEDIwc+ZMrF+/HitWrEj2UAwp02NLth5O8kiIiIhaNwZCrdDEAfkAgOXbj8AfCCV5NERERK0XA6FWaHBBFvIzPaipD2LN7tJkD4eIiKjVYiDUCjkcEo7tFt52Y/shNlYkIiJqLAZCrVS3XB8AYH9ZbZJHQkRE1HoxEGqlumSHd6QvZiBERETUaAyEWqmuDRmhfQyEiIiIGo2BUCvVNSccCBWX1SR5JERERK0XA6FWSgmE9peGM0I7D1fhcGVdModERETU6jAQaqW65IRrhCrqAvhm6yFMeWIhpv3tW8gy9x8jIiKyi4FQK5XpdSHL5wIAXPHSMtQHZWwtqUTfez/GnCXbkzw6IiKi1oGBUCs2pGu24eUP/m99C4+EiIiodWIg1IpdPb53sodARETUqjEQasXOPLYLBhVkomOGB/+89nj18v6dMpI4KiIiotbDlewBUOO5nA58MHMSAqEQsnxu/PHiYfi/d9aitp4bsRIREdnBQKiVS/M4ATgBACN7dQAAVPsDSRwRERFR68GpsTYkzR0OiKr9wSSPhIiIqHVgINSGpHvCgVBdIIRQSIYsy6iorU/yqIiIiFIXA6E2JN0TmemsqQ/i93M3YMTDX+DHvWVJHBUREVHqYiDUhnhdkbez2h/Ed7uOIhiSsXz7kSSOioiIKHWxWLoNcTgkpLmdqKkPYuwfvlQv33OUG7MSEREZYUaojVHqhES7j1YnYSRERESpj4FQG+NzGwRCRxgIERERGWEg1MYYZYT2Hq3hrvREREQGGAgZKCoqwtChQzF27NhkDyVuRoFQRV0AZTVcRk9ERKTHQMjAzJkzsX79eqxYsSLZQ4mb0dQYwIJpIiIiIwyE2hijjBAQqRPaWlLJ7BAREVEDBkJtTMikFGj30WpsLC7HlCcW4uLnv2nZQREREaUoBkJtTG298T5je47W4O2VewCEs0JERETEhoptjlkgtPtINbyuyLTZCwu3YUjXbCzddhjXndgX+ZnelhoiERFRymAg1MbU1ocML99ztAYeYQuOxz7ZqP68YX85/nnt8c0+NiIiolTDQKiNqQ2YZISOVsPtMJ4JXbb9cHMOiYiIKGWxRqiNOa57jub3nnlpkKRwpqiiLpCkUREREaUmBkJtzMPnH4trJ/bF9Sf2RYd0N56cNhIje+Za3keCZHj5kSo/O1ITEVGbJsk805kqLy9HTk4OysrKkJ2dnezhxE2WZUiShGp/AB+u2Qef24ln52+NWjWW5nZiwyNnai77ZtshXPH3Zbh6fG88fMFxLTlsIiKiJonn/M2MUBsmSeFMT7rHhcuO74ULR3ZHli+6LKymPogHP1yHOqG+6I8NxdSvLt3ZMoMlIiJKgkYFQv/85z8xd+5c9fdf//rXyM3NxYQJE7BzJ0+cqSzTa1wfP+ebHXhlyQ71d9YTERFRe9CoQOjRRx9FWloaAGDp0qUoKirCn/70J+Tn5+OOO+5I6AApsbJ9btPr1u8rV3+uqGUgREREbV+jls/v3r0bAwYMAAC8//77uPjii3HDDTdg4sSJOOWUUxI5Pkowo6kxxaHKOpRV1+OZr7bgYEVdC46KiIgoORqVEcrMzMThw+HeM59//jlOP/10AIDP50NNDXc5T2Vup/lb/s22wyh8+HO8tHh7C46IiIgoeRqVETr99NNx3XXXYeTIkdi8eTPOPvtsAMC6devQp0+fRI6PEizIRYJERESqRmWEioqKMH78eBw8eBDvvPMOOnbsCABYtWoVLr/88oQOkBIrZLY9vc37/PObHZj9yQYEgiHM/mQDvtp4IJHDIyIialGNygjl5ubi2Wefjbr8oYceavKAqHkFGxEI1QaCSPe4UFrtxwMfrgMQDo7+/vV2vLjwJ+x47JxED5OIiKhFNCoj9Omnn2Lx4sXq70VFRRgxYgSuuOIKHD16NGGDo8QbWJAZ932q/eH+Qou3HlIv+2Yb9ycjIqLWr1GB0N13343y8vBS67Vr1+LOO+/E2Wefje3bt2PWrFkJHSAl1vQJfXDTKf3juk9NQyC0aPNB9bJdR6rVnwNB4x3viYiIUl2jAqHt27dj6NChAIB33nkH5557Lh599FEUFRXhk08+SegAKbG8Lif+78xjDK/zCCvKNj5yJjpmeAAAVf5wT6GVOyPZPrHPUGlNfXMMlYiIqNk1qkbI4/GgujqcEfjyyy9x9dVXAwDy8vLUTBG1Lj3z0rDo7lPxj8Xbkel1wed2Is3jBKoiU2Ol1cYBz9EqP/IzvVGXL9hUguw0N0b16qBeVlsfhM/tbJ4XQUREFKdGBUKTJk3CrFmzMHHiRCxfvhxvvPEGAGDz5s3o0aNHQgdILcMpSZAkCded2E+9LN0TDlhq/EHIsoyKWpNAyCBA2ldagxmvrAAAtZj6v8t24b731uKFq0bhzOO6JvolEBERxa1RU2PPPvssXC4X3n77bTz//PPo3r07AOCTTz7BmWeeGePelIqcDinqsjRPOE5es7sUtfUh1AeNV5wdqfJHXbZbqCHyB8I1RPe9txYAcOO/v2vyeImIiBKhURmhXr164aOPPoq6/K9//WuTB0TJYRQIpTdMYf35s0349qfwKjGHFN7NvlLYlPVotTYQqvEHUVxeq/5e7Q/A4/I0x7CJiIiapFGBEAAEg0G8//772LBhAwDg2GOPxfnnnw+nk/UfrZFDMgiEPJH38ust4aXzmV4XsnzuqEBoxY4jeHHhT7jj9IG48d+rsPtIZKuVKn8QuenWzy/LMtbuLUP/TpnI8Db6Y0lERBSXRp1xtm7dirPPPht79+7F4MGDAQCzZ89Gz549MXfuXPTvH9/ybEo+46mx6KA2y+eO2rj1aJUf//h6O77ccABfbojuNF1dZ76T/Xur9yDN7UQgJOPm/67G8B45+PDmSY14BURERPFrVCB06623on///vj222+Rl5cHADh8+DCuuuoq3HrrrZg7d25CB0nNz2UQCHkMNmjNTnMjS5exOVJVjzKLJfRVDavO9I5W+XHHG98DAMb3C2/T8sOeMttjJiIiaqpGFUsvXLgQf/rTn9QgCAA6duyIxx57DAsXLkzY4Kj53H/uUM3vRsvfDxkUQWf5XFEZoSNVdTCYWVOZZYTE/kMHKmoNb0NERNScGhUIeb1eVFRURF1eWVkJj4dFsa3BtZP6Ysk9p6HoilEY1SsXD11wbNRtistqoi7L9rmRnebWXLZ2b5mmwaKeWUZIXI6/vzR2ILT7SDVOeHQeiuZvjXlbIiIiOxoVCJ177rm44YYbsGzZMsiyDFmW8e233+LGG2/E+eefn+gxUjPpnpuGc4Z3xbu/mogeHaKrmfvmZ0Rdlm2QETpU6cfaveZTWlUmGSExeKqpNw6WRI98tB7F5bX482ebYt6WiIjIjkYFQk8//TT69++P8ePHw+fzwefzYcKECRgwYACefPLJBA+RkuXB84/FZWN74vkrR6mXZflcyPZFMkK9O8ZYDgbg9jfW4InPN8HtjMyfBYIhlJvUFdWb7F2243CV3aETERHZ0qhi6dzcXHzwwQfYunWrunx+yJAhGDBgQEIHR8nVNScNj108XLNU3ulwaDJCJw3shH8d3hnzsZ7+aivSPU7UB8OZn8q6gOl0WkVtAHkZ0VOsZtNnz8zbgtW7S/HiL0bDbVDgTUREZMZ2IBRrV/n58+erPz/xxBONHxGlnAxhGb0/GESWkBHq3iHN9uMEhM7UFbUBlJts2VFeU28YCFWYTLH97eufUFEbwKbiChzXPSfq+mBINmwP0N6s2nkES7cdxk2nDODxICJqYDsQWr16ta3bSVbLh6hVEt/T2voQMryRwKhrjs/24/iFKa/y2nqUm2SExADp1aU78NPBKsw6Y5Dhbav9kcxStUFR9suLt+OJLzbjP9eNQ2HPXNtjbYsufn4pAKBDhgdXjuud5NEQEaUG24GQmPFpbS666CIsWLAAkydPxttvv53s4bRqAztnavoLdcu1nxESVdQGTGuE/vjpRjx12UjkZ3px/wfrAAB9dLVI/kAIHpcDJeV16mVV/ujA6uGP1gMI73M299YTGzXWtmb9vvJkD4GIKGW0i4KK2267Da+++mqyh9GqvferCbjltAGYPqGPZlqlIMt+RkhUXlNvOjW2ZOth/Oa9tagVVpLtPqpdyl/TkP0pqaiLusyIUcPI9qouYFyMTkTUHrWLQOiUU05BVlZWsofRqo3s1QF3njEYPrcTnbMjwU9Outvw9mP7dMAfLjrO9PHKa82LpQHgs3UH8O53e9Xf9Z2r95aGA6OSCnFz1yAq6wI4YtAIMlYRtV8XHKzbV4Zdh6st79NaMRAiIopIeiC0aNEinHfeeejWrRskScL7778fdZuioiL06dMHPp8P48aNw/Lly1t+oKQa0TMXd54+CE9dNiJquw2Fz+1Ehsd85nX7oUrTqTHFfe+tVX/eV6rNCJ399Nf45zc7cECYGttXWoNxf/gSox75An/+bKPm9laB0D+/2YEh93+KJVvDG8uWVNTinKcX46Q/t97pYCv+QOyeTURE7UXSA6GqqioUFhaiqKjI8Po33ngDs2bNwgMPPIDvvvsOhYWFmDp1KkpKStTbjBgxAscdd1zUf/v27Wupl9Hu3DJ5IC4Y0R0Okyknr8sJj8v84/X9butu1Hp7jkZ3uX7gw3WajNC6fWVqF+v5Gw9qbusSehgdKK/VtAR44MN1CIZk3P7GGgDATwcj/YpkObLSra1gRoiIKKJRfYQS6ayzzsJZZ51lev0TTzyB66+/Htdccw0A4IUXXsDcuXPx8ssv45577gEArFmzJiFjqaurQ11dJMNQXs6i0sbyuR2aGh+9H/aUapbhx7LfYLsPAJpiaXFKLBDSnuyVAu9DlXUY9+g8ZHicWPfwmZrbBBpWtYVCkeAnEJI1jSAVtfVB1AVCyEmz/xr0DpTXYtvBSkzon9/ox2iMunoGQkREiqRnhKz4/X6sWrUKU6ZMUS9zOByYMmUKli5dmvDnmz17NnJyctT/evbsmfDnaC98bic6pEf3AurXKQNelwPltQG1zseO+qBxZkbMCB0WAyHd7ZWM0JpdpQCM9z9TniMoZIHMsifnPbMYk/74FTYWNz5YHvfoPFzx92VYvOVQox+jMeo4NaYKhmTM/mQDPl9XnOyhEFGSpHQgdOjQIQSDQRQUFGguLygoQHGx/S+uKVOm4Oc//zk+/vhj9OjRwzSIuvfee1FWVqb+t3v37iaNvz3zuR04eVAn3HRKf83lmV4XRvXqoP7ucTo0e5r9bGT3uJ7ngElGqD4U0kxruRoyQm5huk4fEChbewSFjFBxWS1+895arNldql5WWx/ElpJKVNQGcO0rK+Iar5El21o6EGJGSPHx2v14ceFPuOFfq5I9FCJKkqRPjbWEL7/80tbtvF4vvF5vM4+mffC5nHA4JPzfmcdg7Z4yLG4oRPa5nPjrtBF4a+VuVPmDOK+wKx7633psPxSuy7n+pH54d/Ve08fNz/TiUGUk+BFXdpVWR4qvdx+pwYVFS9Tf95XWYMGmEk3RdEVtAN7MSHPIQEMAJAYKv31/Lb796Qj+s2wXdjx2jno/9XHLalEfDLWqrT0YCEUcFNovEFH7lNKBUH5+PpxOJw4cOKC5/MCBA+jSpUuSRkV2eN2RwEDsRO11O9Alx4dbJg9UL0sXtvDwWhRYA0CXHG0g5DfZoBUAvt9Tpv68elcpZryyAjNPjWSoKmoDyM+MBL5KJkjsR/SD8BiR+2lXu9XWB5sUCLV0hyNOjUUY1X8RUfuS0n/GejwejB49GvPmzVMvC4VCmDdvHsaPH5/EkZHo7qmDAQD/76R+htdnCEvs09zOqOs1gZDB9drbNi12X7g5spqs0mTVWo1Q5K2vNQIQtdpNzLAUl9XiteW7LAvF9ezsSlMXCGpWujUFi6UjXK0ok0dEzSPpGaHKykps3bpV/X379u1Ys2YN8vLy0KtXL8yaNQvTp0/HmDFjcPzxx+PJJ59EVVWVuoqMku9Xp/THOcO6okeHNLy46Keo68V+Qj6DQEe8zCoj5HE64GziXnZHqyLZHH1mBwDmbyzBCwu3qb8bZZz0gZAY9FwzZwU27C/HzsPV+L8zB6v7tIVCMr7eegjHdsvWZKHsmvTH+ThYUYd1D03VBJaNwamxCG4+S0RJ/3No5cqVGDlyJEaOHAkgvMv9yJEjcf/99wMApk2bhr/85S+4//77MWLECKxZswaffvppVAF1IhUVFWHo0KEYO3Zssz1HWyJJEvrkZ2j+uhbb74gnbp87+iMnbn/hczvx8owxGN27Q9Tt8jI8mmxNYxytjhRUG236es2cFdgZo6N09NRYJLDYsD+8iuyFhdsw6Y/zUdrwfB//uB/TX16OM5/8OurxJBuTY0otS1NWqSk4NRYhTo0FLKZZiajtSnogdMopp0CW5aj/5syZo97m5ptvxs6dO1FXV4dly5Zh3LhxzTqmmTNnYv369VixoukrggjIFGqEenRIj7pe/Kvc63LgtGMK8M5NE/Cbs4dobpeX4TGccirItp9hEXeoN8oI2WGWERJXmwHhbUC+WB+ub1uwKTwlJ9Y32aXpa2TSRiAW2UZLgPbI5Yh8BVrVmxFR25X0QIjaJvF0LQYOl42N7s3kEKa7xOzQ9Sf1w19+Xqj+3jHTg4cvOA5up4QzhkYygr3zIsvv4xFPZ2sgEkzoN4utC4TwzdZDOPaBT6Puo/QvyrVovBhrdqZeaA4ZbGSnazFGa4PNshtN/LyxdoqofWIgRM3uzOPCK/yum9RXs2GrQswISboaILGQOi/Dg+P75mHtg1Px3JWj1MsbO11WURuIawsNJZMSVSxdH8SD/1unmSJTKEv6c4XNaSvrdM8bo+5JzALps05GZFnGGyt24Xuh95G+03bIxuO0N8wIEbVPSS+Wprapd15kCmxkrw748aGpyPAYrwhzWAQC4iqzvIxwp2qluLp/pwxsO1iFC0Z0w9q90cvcY6msq4/r5FdVF4DP7YyeGgsEDbtoA5Emj05hCqakvBa98qKnCM2IgVDARgCzYPNB/N874Q1rdzx2DnYfqca/l+3U3KbKH4hri5NUJMtyVOAcL00XcWaEiNolZoQoof573TjcfOoAXDK6h+byTK/L9KRlFQiJK8o6ZmiDjbdvnIBXrhmLSw2m2+yoqA3EVS9TVRdsuF90sXRPk8BGCYTEAuXi8lpNQGN1Kl+96yie+GKT+rsYFNX4g5i/qSSqbkop2FZc9Nw3eHGhdjXfCY/OUztp6/1t0TZc/fLyuFoAtLT9ZTUY9+g8PPH5ptg3tiBm2FhETtQ+MRCihJowIB93TR0cV38Wq5tqp8a0RdEdMjw4dXBnzfL8eFTUBuLKAlTWBbDsp8N4a9UezeV1gSAydUvaR/XKBRBZpSYGXCXldaZBiN5Fz32Dfy6NZHP8wuPc995aXPPKCjyuCwb0015GBdpV/iAOV/qjLgeARz/eiEWbD+Ktlam7xcyzX21FSUUdnv5qa+wbWwixiJyo2W0sLsdZT32NL9cfiH3jJGAgZIDL51tW99w00+vSPNFTY3pOh4QO6fFP85TX1seVBaj2BzDtb99GXV5bH9KcRB0ScM3EvgCgBhtiwFVcXqvJ7MQzuyNmad5r2Irk5SU7NLcR4yCrWqBYr70khbefsBtIxiI+DAMhoubxq39/hw37y3HdqyuTPRRDDIQMcPl8y7piXG9cMa4XXvzF6KjrxBqhjpnGgRAAdMkxD6bMxDs1ps+sKDVPtfVBzYl5bJ88NWhTMkK1QtBxoLxWsxLMLFYRt/pQ1BoEL110BejidI/R7RWxXnu8q+paUqJqvUNNmBrbWlKBf3+7k/2HiGIorWlcq5KWwkCIks7jcuDRi4Zh6rHR+8fZyQgBQNec6NVosZRW++OaGlu186jmd6XYuLY+pJmyevzSQrV4Wq0REp7nUKVftxLMeAz7ymqiLlMeR8wM6V+7uEJMqWtSuJ0SujXcPlYNkL5NQCz7Smtw9cvLsWBTieXtistqba1+sxJKUA+AYBOmxqY8sQi/ff9HvLYidacQqX3ZW1qDK/7+Lb7amJgpqFU7j+DMJxdh6bbDTXqceFbnJgMDIUppYo1QfoZ548QuJoHQFeN6md5nX2mtZcZEb/mOSCCU6XVhVO9cAOFMghIIPXLBsejRIV3NXh2trserS3fgkx/3q/etD4S0K8FMmiTuPRodCCnj/elglXqZftsSMfip9muzOk6HpO7nZnTiFzNbZnuxmfm/d37Aos0HMeMV80zq/E0lOGH2PNzy2ndxPXaUBH2vigGZv5FTY2KbAqJk+s17a/HNtsO4dk5ipqCufGkZNhZX4PK/R5cExCO1wyAGQpTi0j0u3HXGIMw6fRByLOqAuhr0JwKAvh3Nmy36gyHsPmK9nYZIOeHNmNAHS+45DV0bpuNq60PqMnxPw15pSt+gYEjG/R+s03S0DoRCmqkxsyXx+0rNM0JbD1aql+k3YxUzOfqMkFOS1P3cjLJhYpYo3k1edxyuinmb5xeE93H7eG0xQiEZew1eox1iRqgpU1OJKJZO9nZlxWW1mPnf77Byx5HkDoSSTslAJ4pRb7TGSPGEEAMhSn03nzYQt04eaHmbAiEQEuuK0kx6Fym2lVRaXm9kWPcc5KS51YCitj6SEVICIa/LqclmifxBWZcRMpkaMwgSlIzQ+n2RJfJVuoBFrO2xygjV1gex41AVzvjrQrzdsBJO/OKLd2qsxh/7S1NMkT/+xSZMfOwrzN9oPZVmRIwdq5uwzF+zfL6Rj2PV/qElfPLjfsz9YT/+/e3O2DemVqGxwX2yP4tmODVG1ALEzs1ZvshS9gyvcTCiBEtKZqV3R/sNDpVpL586xSQEQs7I8ymBkl4gGNJMQRllhMqq6/HOd3ujLq+rD6EuEMSqnZG//qt1RdXilFaV7jqnQ8gIBUK4663vsflAJe5663sA2ozQoYr4/rq003dI/D7c2hCENqYZpnj8jIrK7dJMjTXy5CP2x9pXWtPi/ZeU95+dsduG2R9vwLAHP8eOQ7EzrHrOZKcnTaR2GMRAiNqIDkIhtRgIpbmNewwN6JwJIHIy1q+8spKfGa5V8rkjU0x1uqkxAHCbNEgKBGVN8GNUOFy0YKvhtNHOw1UY9uDnWCHUK+mnsCrqIpmc6jp9RsghBEJB/LBHG4SIK6cOV9XF/Etu7g/78cGacMBWo1navycqGwVovxCV4LExG9GKAV5TAqFQAjpLK2/zpuIKTHjsK5z55KJGj6cxlCm9xm7ISxEl5bWY+NhXeHrelqSN4cVFP6GmPoinv4p/DCkaB6V8JMRAiNqEET1zcUyXLJw4MB8eVyQrYzY9NVAXCHndTvz+wuNw2jGd8eWsk3Djyf1Nn0u/1UdtIHpqTP+zyB8MaVLf9QYnsAPltYb3XbnzaFRRb5Vu77IKy4yQmMkKRWURxKmx+qB1Dc+eo9WY+d/vcNvra1BeW68J6O5443s89OH6qPuIgYfyus0aO1oRpwP1GbF4JKKPkDId8emPxQCAHYeN6878gRAuLFqCW15b3ajnMaMEr01diUfAU/O2YG9pDZ74YnOyh9IozAg1DgMhA2yo2Pq4nQ58ctuJePXa4+FxRr4MzAKhwV2yAERqTbwuB646oTdenjEWAzpnYVBBpulzqYFQQ8B1qNKvnow8QhbIY5YRCoU0wY/R8vnyhr4bWbqO1WKQM2VIQcPjyZqTeKVFjZBLyAjtL6sVLg8fM/20zsz/rjbNCn28NrISrqw6up7o3dV7oi4Tz9VKQHewMRkhIRCqqW98vyMxMGvsqjElEHI5rU9CK3YcwZrdpfjf9/sSuumtkskKpngdRmuQUk01G/F2pmwglOKfTQZCBthQsXWSJAmSJGm29xCLpcWgYkL/fM199fU8ZtmcDI9Tzah4G6bGlm8/oi5nt5MRCgRlTY1LvcFJUQl48kyaSHbPTcNfpxWqv4uBgSYjpFs15nCEC7kB7bJvGeEvKyUjpEz7fb+7FEcNghwA+OgHIRAyaJhmlKEQvxCV6cTGTY3ZzwhtLanEJc9/g0WbD0Zd15SGigqlRCjWSUhprgkktlllW8sI1QWChoF1S2jtxzDRxdKJerhUP6wMhKjNcQknJHEfMjGo6N85Q7O1h9elzRyJv4u3y0lzm94nfJnNqTEhCxQ0mBpTVmyZNZEc3bsDsnxuNeOlBDyfryvWTHcZZYSUIEfcQiMYklFZF1AzQoMLspDfcLyKy6Kn6YIhWbO5q9GJ3ejLT/zDsL7hr+/GTY1Z1wgdqqzD0YalxDP/8x1W7jyKq19eHnW7xjZUFKc21YxQjECopDxyvI0Cx8ZSMkKttUZo28FKzHpjjTpNPfnxhSh8+POELwW3o7UHQonOCCUqsJJTfHKMgRC1OWKRsjg11r9TJkb2ysUJ/fKQ5nZiXL889Tolu6P+LgQxJw3qpP4sfk/63NH/fOwWS4tTY4GQjEOVdZovfiWw6GgSCGU0ZLeU/1fWBXCwog43/GuV5nb6QmqHFAngynUn4/LagLo83+t2qi0Jisuj64QOVdZpXoPdpfaaqaiGYKKspj7uaSnt1Fgw6roxv/8SJ/15PkIhGSUVxvVWgDYjJI6hLhA0bF8QuV67txxg/n4r9ggNMhMaCAVa99TYL15ahndX78Uv/rEMQOQ4rUhCX6RUCoQaMxJngjNCKTrTlnAMhKhN8wo9hZwOCe/eNAGvXX8CJEnCGUMjW3rU6rIK4pfQxaO6qz+LU1r6js6AzRqhoLaz9OGqOpzx10UY9+iXeGFhuOGgOjVmFgg1BHjKrvdV/gC+3BDdVl9/wnU5HGrQp78uvPRbmRpzqivpisuip670RdRHbf71Lp5nxGMZz1//gaB2k1v91NiPDcvxK2oDqKkPWp5QtBmhyOP87LlvMOGxr/DDnlLD+/kD0RmhWH+N7y2NFFFbBUI1/iAmP74Ad775veXjKRI5NZaoQMAfCOGtlbstg0nFvoaM4/6yWk1gmoyeOKkUCDWGI8GRi5SojFCKH1YGQtSmicGIQ4rUEQHA1GMLcNnYngCAMX3yNPfrlx/pSD26dwf1Z3Hayegrwt6qMVkzNbZ6VymOVPlRH5Txt0U/qdNUAJBnsq1IJCMUDogq6wL4bF141dJpx3RWtxYp1dVaOBySWuStzxb9/IWleGpeeLWMz+VAQY6SEYrOqOwv1V62z2D6zIhsUpwcT52QfiWcPhDaKXQLD6+oM38ss1Vj6xoaVr5r0MsJ0H4OlIcXp8b0J9RqfwDf7460KrAKhNbsLsW2g1V457s9trp7q8vnm3gS33KgAoUPfY5nErB0/G+LtuHut3/AGX+Nr5WAmN2LkWBrFk09ho1V4w/igzV7UVrdtOnAVM0IpXogZNxkhagVE+ej3cJKHkkXukiShMcuHo5bJw+M2ri0Z146PrplEjpnezV/FYlZjNz06GyNrakx3aox0ZEqPw4KtTvmU2PhYEapgaqqC6ibwt55xiCs3VOG/0JboAuET9b6aUDR7iPhv+B9bqe6bckBgyBH/5e+0b5osYjHMp6VY/pO2o98tB6989IxZWh4Fd2WAxXqdZV1AcsNWo36CIlZCbP7ikGc8jrEIn1/IKQp1L/i78s0AaVVICSuPvthdykmDMg3va3ZuBvj4Y/Wo7IugMe/2IxbYnRyj2XR5kMA4t+mpSmtEBIhUZv5xuuRuevx32W7MLJXrubyP3+2ES6HA3ecPsjW47BGqHGYEaI2R/wuE78YHCaf9m65aYYp4OO656BzVjgYuP/coQCApy4bqV4/uEsWnri0UHMfMRAy7ywtW7bQ31gczkb43A7TLUKUjJA6NVYXUE8iHTO8SG+43CgjZDYukc8dyQjtN8gI7SvTBj52pkAA8729th+s0hRlV9TWmy65NWrU+Kv/RDZx3XSgUrhtMEZGSFuz9M6qPRj+0OfqZbuPVGO7QYdfcezKNKcYdOtrntboNma1CoTEFgarbWzoqtR1NTWbkchpocaeP8X3trENLpsiWRmhD1aHM4+rd5WqlxWX1aJo/jY8NW+L7W7liZ4aEwOhpnw+Uj0jxECI2hzxH50Y4DRlvvvaSX3xw4NnYOqxXTSX/2xUD83vmhohi1VjRkvmlVVam4rDGY0sn9u0zkjJBCmr2IrL6tQvqjS3E76G59YXRLsckmFtk55YI2SVESrIDk/d2d081axG6OGP1uOE2fNwtMqPH/aUYtiDn+PXb/9g+Bj6lgCANgjRZ4SsepgEdcvnl2w9pMlizN90EKf+ZQHeX71X87hioKNMc4qfL3HqTAx6h3XPARArEIrc/rudR01vp45b6SNk0I8qHvGc6A5X1qFo/lbDFYVA4zMJYkaotpHtDJqiqccwHvXBkHrMjQIYcQGC3QAtRiuruInDamyfLYANFVslNlRs3czSsE39jsj2uQ0vF7NOYuDiNvlWCug6SyuUJo8b1UDIBbfL+DGUjNDAgvB9vtsVOWH6PA41CKvQb7Eh2c0IRVaNbTpQgRteXYmi+VvVwlylGePgLtkAgF1HjLsp64kZIaOdrTcUl+PZr7YCAN5aFd2QETDeU+uYruFxhEKyZgqqqi5g2cNEPzVmdvK9/Y01OF2od/EbdAaXDVbEAdqappMGhae5LIulhb/+lc+ClXiLpZduO4xbXlutmYIF4psWuunf3+HPn23Cra8bd8k2y77GogmEkpARinUMH/jgRzz2ycYmP48/EMKJf5yPC4oWAzCe0hKzQHY3YRUDqkQ07RSD+6bsoceGiq0QGyq2Tc21CsWlmX4TgiKTgCMkR/915XRI6N0xXKCt9OfJ9rnhMjmjKKvGju0WDgCU+iBJCgdjyhJ5o+cx6n+k53M5kCns2fb5+gP482eb8MTn4WJqZVVbr7w0w/ubifV9GArFPhkZTZl0zgpnpip0xdGVdQHL+gTxuQIh2fa+ZZqMUMNJyqxLtVLT5HZK6j51+kydSDzh7CuridnoUV0+b/PEd/nfv8X/vt+HRz/eoLk8nozQ8oal7cu3Gy9x19fj2SVOjVXWBjDzv9/hX0t34GiVHy8s3Ga69UyiWB2D/WU1+OfSnXhh4bZGN99UbCquQHF5LX7cW45QSDYschY/i2Y1hXrid1F9ArJbZlPZ8UrtMIiBELUjzbUa12z6StyJXk/f+ybN7VQbN246IGSEzKbGGjJCSiCkTOekuZ2QJMk0CHMa1AhNGdIZ+ZkeTB/fW73M63YizWAKbdvBcP1NXcP4O2VGisyP655t+JyiWH8ZHq32G04bivzB6JOQcqLQBxjV/qDtjFAgFLKdhdAUSzc8gXjeMQqE0j0udSrTLCN077s/aKYEZTlSwG6msavG9AXujenHmJtunCVtfI1Q5L19bcUuzP1hP373wTr8+p0f8NgnG3H1P6KbYoZCMuYs2a62TWgKq2NYH4jeJ6+xxCDFHwwZTo2JTUoDNoMaMbOUiAab4ue4aRmhyM/JaJQZCwMhanPMzrXNlhEymQIzm9YCogMhnxAIKePP9rnhMZ0aCwcpHTO9mhVvSvBiNv3lNKgROnFgJ6z4zRRcd2I/zXiMAiHlS6y24QuyU1Zkef/kYwoMn1MU61xdWu2PWaehfDkP7ZqNfp3CWTSl3kjf2LGqLmD556gmIxSUo94XPSWQE4MxpTO4dkPZ6KmxTK95IFRSUYslWw/hteW7o55zh0Gxtkg5QcU7FaJfPdiY+hiljkyvMf/WHJI2I7RbmG6d19Aja9OB6KnC91bvxYP/W49zn1kc93Pq2c2K1ek+J6t2HsGjH2+wnVEUg5S6QMgwIyROa9sNasTjHgjKWLzlEB7+3/pGZ7DEz3Gi9mEb9cgXmCtsz5MKGAhRm2P2ldFcGSGzrI1Xd/mT00aoP+u/MNM8DvTooJ1myk6LnRECoAYDQKTJo2VGSHcC9LkdkCQJnbMjQU1tfdCwc7ay75hy8hUbPooduM3EOtEcra6P+de28oWcm+7GbQ3LvNVAqEZbExVr+bxYelEfDMX8q1cZm1GxtPg0dQYZoQyvUw2EymvrUVFbj9eW78KRKj9O/ON8XPnSMsPn3HHYOhBqbEZIHxDbLEPRBCv6thOKxixecjokTUZI/By4LJoKrU1AJkhh9fkM6LI4ooufX4q/LfoJz86314NJ/Pz4A6GYy97rbb454necPxjCVf9YhpeXbMe/lu60dX9RIBjS/OHSlIyQnn5aNtkYCFG70SnTuDlhU5kFK2Iwcu9Zx+CCEd3U36MCIbcTvTqmay7rmZduWiOULuyhluWNTE8owYtVRkh/nbqJrFA7VF5bD0mSorJCSkZIOfn2FRpPFvbIiRlsxkrxH632x64Ranhur8uhTksqfzHrM0LhqTF7fYQCITnmX73KX9Z1mj5C4ccImtQIVaqBkEs91rX1Qby+fDfufXct/rboJ8vntQqEAsLKIzvZDDEzoA+E7GaUxK1C0r3Gregas0LTIUmoNlgRCABui0AhkTvGWx1DMTAzW0G1yUZxO6ANJv3BkI1/N/beG/Fm4r+13TYXM4j0f5Ak8jgrvt9ditXCQo9kYUNFant03xlFV4zC+2v2YuZpA5rl6cxWh7k1K8jCWReP0wF/MGRYI9Qp04t0j1P9q7hffqb51JjQX0jMDil9h0wzQlL01JhR8bTyRZ/ucWrGWlZTj9r6oHrC6JLtw0e3TEKWzwWX0wG30xFVSKxvNKh9bofmC7a0uj7mChnlMTwuh/rYfjUjpA2EwsXS5vRTY7Gmh2rrQ8jyGWeEjPZRAyIZoUyvSw1C6wIhtZu2WQFwXoYHR6r8msBDTzx2ZnuNHa6sU4MwsT5Dv0mseP9QSDbtSbPnaOSkarRhMJCYjJDI7XIAJtfZzZbYYVkjFNRmcYzYTcqJrzORGSGxBk+saWpMYKrPeiUyIxSSZdTWB3FB0RIAwPqHp2r+uGtpzAhRm6NfJXTO8K74+9VjTJe/N5VZ2t5ouw2lnih6aixc5NwrL5IVGtA5QxNMiV2mxefMElZ3KdtnmBVwO51GGaHI73eePghdc3xqvZBRzyHxxO11O3Bc9xx1xZv+5FqrO2HoTyDpuoaRR6v9hlNjIWHbkTo1EHKqQWikRkg7NRZziw19sXSMWgrlZGC0fF7TI8loaszj0qzmUwLMCpMNa5UMpj5Lcueb3+OCoiWo9ge0gZDBcdt5uApj//Alrp0TXgErBkL6z6BmA1qLE+9eYXsVswyf3ROv+JxOSTJslgnANDMKJDYQssqK+W3Uy9htQVAlvM76oHGNkMhujZAY2IsF2Y3pOK3/t5rIQEiWtX+0JKN5poiBELU5Ld2yws7UmBKYKIGCUUYI0AYevfIyNCcAs60WlMJpwF5GSJ8BEp/zlskD8c09p6mF20adrTcLnZtj9STSF5XqT7Ael0N9LiBcI2Q0PXHXW9/juAc+w08HK9UvaKOpMaUIWTnORs0XRSFdRijWl/2Jf5qPlxdvN14+bxJIVDaMIcPrUt+XukCkHklf16TokBEO3GvqgzhS5cfcH/bDHwjhne/24PvdpXhn1R7NVJdRNuPFRT8hJAPfbDsMQBsIVetea9DGUumvNh7A+oZ92MyeE7CfERKfx2GVEbLoFNiURn964uvRr3AUn8fs+NgtthaD2zdX7Nbsj2fEbrBn1rC0MRk6/XMmcmpMRuyFCS2JgRC1OS3ds8JjZ2qsYYpLORHqv/CVgEP8C9vjcmimxoZ3z8Er14zFJ7edqLmvODWmBDlWvYL0S571WR/xr3l9xgYArn91ZcNzOKL+8tcHoWJGSJblqGyP2+nAx7eeiEcvGgYgvGrMKMvwbsMWBH9b9JNmaszdcDzrdVNjXRqKePX7kunpt9gwWj4/pncHtU8REO6CrZ0ak/HOqj3qGAHj5fOZXqcaOAZDshqk6euaFEoherU/gF/9ZxVm/vc7/PmzSDO/ZduPaMZrNDWm70ytCYR0x6Zec6KPPkkt334E185ZideW71IvUwLQd7/bgz/MXa8Gg3b7CImBp9MhaTIlIrOVmUBiM0Li50Ef09iZGrP7R5j4Ol9avD1mAGV3ub6m5k24T2NW8TVnRigkI+ZntyUxECJqIrOpMa8mIxQOKJQMj35aQglGzhga3sJDWZYsBlMup4RTB3fGkK7afj1ZBjVCZn9Byw3PJd7HaHWYflxG7HSorqsPoqougNJqv+F0i8flQE66G8f37QAAOFrlt6zT2F9Wqy5d9zgdauZHrRFqCCq65YSzTGYnVoV44jDLRnjdjqiVduJJYl9pLe5863t8L+wLZlQsnS5khMSxVtSaZIQaNvWtrQ/h25/CjQv//vV29fpwICQs4w9FZzDEztT1wZA2ENK9XvEvdKMT/Q97SqMuU4LWWW9+j79/vR2frSsGoO0s/Yt/LMNmg2XvgHYbjZBs3tBSnDrSB2n+RvbL2V9Wg4/X7tdkfsRjqD+emkCo4ecf9pTiype+Nb2PmXg3l7XbR0jMSorHSV/vVVFbj5cXbzfdIgVo5oyQrP28JaILdlMwEDLALTZat/MLw6uz+gvLypvTtLE9AQDDe+RoLjfabkOtETKZGrvhpH54+IJj8daN4xtuLwZCsZfSpzWcsM2aKionfrH/j88ie2TUS0i9n8F1+vqs2voQRjz8OUY8/AXKqqMzH8oxym046ZfXBjT1AltLKjVLbfeX1ajXe90ONVDUL583ywi9uXK3afBgdhLzuZxRx0gM6pSiZ7PrjYqlgcg0nlmNkBIImU0hHKyow9aSyDRlMCRrTuoHdeOqqgvgqFgjVG8eCBmd9IzqfvS1K+sbuqKLt/16yyGcIWxPIhKzAvWBkK0AQT/dKWayQiEZsz/ZgOP/8GXMBot3vvk9fvWf7/CXzzepl2kKxqOmxqJXjf3suW+wZOthw/tbvwbrAF3Pbo2Q+BGuFI6T/p27/4N1ePij9bhCCOL09J+BRGaEAFmTkUx2RoirxgzMnDkTM2fORHl5OXJycmLfgVLKVSf0Rp/8DBT2aJn37ueje6BvfgaOadgrTCFmc5SgRDnxGzVUVP5/9fg+wmNEvsLMlhBnarI7kRO2V7eCC4A6b5if5cVPDY36rLI+RlNj6uMbZJL032dlNZG+QFsPVkbdXjkuHdI9cDokBHV7hU15YqHm9vtLa9Ugw+uM7KmmXz7fNVcJhLTH+ddv/4AN+8vxwHnHArDXTdkoIxTrhC0ed+W2GR4nXE4HHFL4hKUGQiYnxQ7C1JiZVbqpr2BIhssp4eXF2/HxWm3TusNVfvU9B7Qn41BI1gQlRhkho49ffUjWrPLb11BIbTQVU15bH7VgQTy51gdl09cqjq2yNqDpXyUGnf9dvgsvLvwJQHhPteO6m38HKHVTRfO34e6pxwDQT42ZZ4SUbIs+e2l3T614M0L2a4Qizy8G2Pq3Q/ls/HTQvDWD/jmtCujjFZK1e/AlOSHEjBC1PU6HhJMHdVKzDM1NkiSM7ZOHLN2XvGGxtMmqMdOCa+Fys2n+TE1GKBK4WGWEOqRH9x4yIj6ePuNllUlSXP73yF+cRtl95XU7HZJpl2JRRV1AWyNksnxeKcA2yrb87/t9wphifwN7Xc6omqt/LN5ucmtoxgNo+wgpjwdEAiGzc2deQ7F0bX1Ic+IXfafrwRKUZdQHQ3j4o/VYqQuSJj++EB8JHX3Fz6A+MDfKCBkFN8FQSFN0XVweXupv9FH97MfiqMvEQMgfDJkWt4tBW0Wd9j0VT9ji9GSsbspiA9OSinAAJwZ1llNjTVw+H3dGyOCB95fVYPGWQ7rnj9yuUphy1ccwdqa5SnUZ3EROX8myNujl1BhRG2WUEXKbZITManrE6TCzE2aGWUbIIBBSHkMM2qwyQuKqsd+dOxSje3eIPL5RRsj0kSIBgUgM9Lrlxg6EgEhNjccVqRFSTlJHq8NTPz0b2hBUGfzlXaP5SzT2F7DP7bAMFo0YF0u71HED1jvQA9AE8vrVd4of9minf4Ih2bQeR6/KH1AzGPrPo2FGyCAltHF/Bf78aWRqaVfD6iejoP1DIQBV6IvTi016KlXqNmM1G6vy/gPmU4oKsSv2xv3hYyaej/WBu74btJHmqhEyygjd8cYaXPWPZZpVfOKYxdqzeFfWbSquwDVztJuOx9u53IoMbbY2ng1/mwMDIaJmImZk3GpGKLJqSGSWERIDJLOvCnGXeF+MjJBSwyP2HjLrOQRoM0KdMr246oRekecyyAhZTQ0YZWfEMXbLtbeTvVIX43U51fvXB8OFtgfKw3Uxyma0RmosCoyNGGWEYqm3yAgpY44Vg3UQAiF9QGeWIQqE5Ji1MXedMQhA+KSvZAb0GUqjbIrR1FggJONf30a2b9hztEbTcFP0zbbDKNEFOvq+TWYbcorHSh9Qi8f6sHD/WBvoiid25THEomR93YpRsXT0OOPvI2SHUY1QSUX4s76vNNJwUxyzOOVqtFGxlVeX7oi6LJFZm1BImxFKdo0QAyGiZqJZNaZkhISziTg9Zbpxq0UjOUWmyQoww0DIICNk1kEY0GaE0j1OZHiMgy794xvRNzsEtAGg3UBI2XhTnBoLhmRsb6h/yUlzo3OWT9N9W6R8n3/6434s234k5vN5XU3MCPn1U2P2Hivd4zS9rbi1iSgUkqOyRKIbT+6Pm06JdFhXAiA7GSE7BbtyQ+2TUSAUDMm44V+rNNeZZbqs6AMhMSg5WBEpEI+VEQppAiEZ8zeWaJd061fh2dhiw+4J3WwrETNGq8aU90MMqmSTGiGxy7SR2vqgJqAy+reYyGBFnxGyG0A2FwZCRM1Ev8WG/jKxKNosKyMGKWbfFZkm+z0Z1wiF/59lcp+o5xfmONI8Ts1z2T2hK4wyQuJjdDPZwNOMx+nQZMy2lIQDpD4NQUJ2mnkn8Wp/ADf++ztbz+N1x58R0m66Gtl9HjBvdqmX5nYaNrQEgPxM84yQsnLLSPdcH5yOyIpC5SSqn6oxqiGxu4N5fTAUNY3y6zMHI93jxJrdpZqMlVHWRlzRaETfbkA8yYuBUKxVTuIY95fVRE0FWRdLm9QI2ZyBijcjZNRHSKlnEgNDzaoxcWosRqHz2U9/jQmPfYWtDf+GOhpkHBM5NQZZuwgggXXYjcJAiKiZiCc85YQvZn7EXePtnBz1S9MV4sou8a9Y45N3+Hp9LyI70txO03ok7aOH6YM7o345YiBjNyOkEJfPA1BrY/opgZDFliqxOk5rnsflMAz6fnVKf9P7GBdLx252qXletwPpJvVbHU02EA6GZNO+REBkJZqSLVMyQvrmikYZD7t1JuE927Sf1eHdc9X3V8zUGAUrgwoyLR8/KhAyCVBiBULiGI2m5KKKpW10lra7xUbcfYQMIgUlMKk2qbWJp0ZIWT32ydpizWOLEjo1JsuaYJA1QkRtlFGNkHbvsMjJzGovpVjEni3iF4pRlkm5euKAjnjgvKH49y/HWT62+PXkcjp0XayNpt4i9/jjJcM01yWqRki9r1MfCIVrh/o07HuWY5ERiqcnSnhqTBuQpHu0bQ70lJNmfTCknoSUaUW7GSGf2wmfSUaok0UgZLXUOq+h7kjZ4FI5IesLrI2yP7YDoVAo6sRm1POptj4YtbINAAYXWAfp+vfOLNsRq0ZIHKPR5yHWqjGj+9jeaywBq8aUy7QZIWHVmHC5ErjJsoxvf4r0PdLvQaYcS6vAy44jVX7sLTXfLFiGNoCze9yaC/sIETUTsRuukvkQMyAdhekNq72UFHa+K8QvK+MaofD1kiThmol9Yz+gjmZqLEbdTF6G9mRt9Fe3GMiY1b2I0txONaPgcTngdEhqX54tB5SpsfCKsew086+3ePY58rm1tTrj+ubh4QuOs9z2QTmhiF/28dYI+VxO0z5OHdLd6usWBUOyJnOhp6xEU6bclL/K9XVFRkGP3c7C9QYZIZ/LqW5FEwjKKKupx8XPf6NpCKno3zkD9587FGU19fjXtzujPjf6cZgFaGZdqhXiGCsNMoT6k3OdLhAyWgVpJ7MRCslxd2k2mhpTAjMxqBKHLBZLK7ddtv0ILvtbpKWF/rOoBkJNzAhd/Pw3OFBeixW/maL540kcJzNCRO2AuIRYqbUR/wLTBkJ2psZiG9snT/3ZeNVY04gbvBp1ixEfX19nINZvKMQx+txOyywOAHTOjgRXyhSTshJvx+Hw0m1l6bxVjVCsk6TI5ZDgFTJCT142AoO7ZFkWsisnZ2XZt0do/mgnEDp1cCe4nZJm1Z54bDK8LsMptkBIttxyQlltlq6bGvuhoW4nu2E1oXGNkP2pMX1xr9ftUN8nfzCEj9fux9aSSuRlePDktBGauqCCLB+undQXd5w+yPBYidkqWTYPKvQr0vSCJtkT9fqoqTGhyDsQNJyCtHM+r7dbSCQwzNCoxdJmU2ORDKzyedQ34NQfX+U1ioGXUo8WlMPNM60afALh92TH4SpU+4PmqwAha6YHk50RYiBE1EzyM73Iz/QgP9OrnpTFL8+8dI96QhrXL8/wMYBIc8BTBnUyvc2Se07Dv385Dsf3jREIxfl9k+3T/jWXLqwaCxp8oYuP31FX0HuoMvpLUT99N9SidsnlkDTLxvXduhU9Go6XdY2Q/akJSdIuHVeOgWVGKKD9a10MIGMFQicOzMcr1xwPSZI0U3J9OqarP9cFQoYZuVhTY8qGu8oY6hoyG9saun4rgbRRcGG3s7A/GD015nM51azn//vXKtz77loAwIwJfXDhyO6a97CD8B7rp270Y7MKzmIFu+IquEqDaVurYml/IGQ41WvnhG53A1XNfUxW4QHhz9hTX27B68t3mTZUVN47fZG91+XUBFn1uqmxaWN6qlPAwZCMnz3/DYbe/5lmqxa9QEhWvwfMMj219SF8LTSDTHYgxKkxombidEhYcs9pkCCpX+jlQhM9l9OBZfdNRkVtAF1zzOtj5t15Mspr69E5y3xVVffcNDVgUhgtSY33C+fKcb2xeOshTB5SoL4mRayaAX2vG6OMkD5tPmlgPpYKNQwil1NSa1yAyMlcnFb0OB3Ib6ifscou6ffhsiJB0nyhK8GrnakxfQ8hIHaNkEs4xuLUmJjhcjmkhj5O2pNxMCRb1vIogZUyBn8ghE9/LIYshwMtpU7LMCMUo+ZGETAIhPSF7YpTB3fWjAfQtpUwuo9Ym2NUdNwxw4PDVf6YGSzt1JhRRkj7uxgIldbU47bX10Tdx+jf1497y/Dgh+twz1nHYEyfPMupSzNGGSEls/T9nlK1WeXYPpGGp+IfXcrYM73afxNul6Q5TsrtlMDL7Yp8dwWF1gwLNpfgopE9DMcqHie7dUVcNUbUholN/4DobsJZPnfMImGf22kZBJnxx+gdYkeax4k51xyPX5zQO+q6WPP6+qkbo4xCV92S+V9O6osLR3QzfDy3w6HpthwJhCLHt2uuT205YDU1VlJuPxCCpH2tauG7xdSYchLSd5UOj9t61ZjYTVycGkv3OHHf2cdgQv+OuGBEd8OMUCAUsrUvlZKB8QdCakPES8f2VD+rhsXSNs9WgVB0jZDX5YjK3PXKS1cbX4ohZV4cGSGjWq/ODVu1xKwR0vTcMZrm0vcRijzvF+sPqH2rNPcxOEQzXlmBlTuP4pIXlkY9jl2BkIzy2no8M28Ldh6uathgN3yd+FkWj4f4sxIc66csg0FZE1jWBUKQ5cj+cS6HQ30PxKDGqqeUGIjbrf1hjVAK4u7z1FxibauQSEYnxERmoO002DvBYsoPiF4p5nM78eRlI6M2sAUAt8uh7r8FRG9bAgDdhMyaVUZI2VvKDgnGX9RWjSiV2ogqo4xQjHowMcOVJkxFZnhduOGk/vjv9ScgzaTZYrg+J/b7ohy7g5V16v5cl47pqT6mcjJ7b/Ue3Pnm96gLBOFvQh8hn9sZld158/+NV4+hWDgrTmm6jAIhITNlFOzkNBTJ1waC2H2k2rTTduyMkH5qLPZxNQpyDumyj/Fsd6F8FuqDIfzhow14/IvNOPeZxYYbwAJAeY3xlK8aCAX1wZ2MWt0WJWc/vRjPLdimPr+y6EMslrb6jPkNMkyxsKFiCpo5cybWr1+PFStWxL4xURyMuis3F8NAqMnl0hFG3W71/nPdCfjlJO3qNDEQ6GLSRNFoSsTlkDT1Ix6DqbHuwkaa+vom0YE4MkKSJMXdTO5ww8lPWY0U39SYcUZI3zjTKLNktKT76vG9cefpg/DeryYIYwjfV6n18LjCU4oeoXYIAO5443u8890evPvd3ib1EfI4HXALrzvb59K892I9ixhgGk0/iid+o0BI6Zpe4w/ixD/Nx7nPLEZxWXTgK45RCVgLe+aqGamoGiEbr9/oGOmzWrYydi4HBhdk4Rcn9AEQPqbLd4S7oFfUBjRjFw+12R9aSoCmf18CIW0bgAWbDmKD0JDT5YxkhMQYSpyq23GoCjf+axV+2FOqeS6j5zPDLTaI2hGl2V+WxUk6UYy+cBuxYMWUuN2GGaeuwBnQnty6mdRGGZ0A3U4HctPEqTGnerlCrJNKVEaosEdO3Kn7Kn8QNf5gJCPkMS6WNsp4iK9d/Fn/eoy2/TCaKkrzOHHL5IEY2StSP6IEo6UNJ04l4FJqiPaV1mgKyvccrba/asygj5DDIWlruXTBoNHmuADgNJh+FMdhlMlRMkri7X46GL1M3ygj1CsvXa3Lit5iI/brN/o3p3+P7WSWHjhvKD674yS1uD0QCmk+N2bZ2HKDAm4gEqDpV6wFgrJl7ZfbIdYIiZmeyPPf/Np3+HRdMc5/donmucLjtn6tLqH+KJkYCBG1oOevGo3zCrvhnZsmxL5xExktox7eI6fJj/unS4ZjeI8c3H3m4KjrjLb70E/hiCcosy0kjOpv3E5Js/rKaGpMrDmyrBHSFW4b9XHqm5+Bd24aj4EFWZg+oQ8A4LxC4/olI4er6qL2GRPHDUAt7NaMRXjtuULh8M9GaYtTjTNC0Sc1r0F2TRlDaXX4xKmc/E8a2AkOKZwZEDdTPVLlt50RMuojBGgzgbGmBxViEKG0oxA/P0ZLuQ37RxluGBt9Yve5IhkQq1VjAFCQ7cW7v9L+O/YHQgiFZM1Ujz4QsnMcezW0gHCpU2Oy5t+R2RJ8s8RKpFFi9GuyajOgyQhppsbEjFC14XPp72NECcC5aoyoHRnQORPPXD6yRZ5L/ML97PaT8Pm6YvzyxPibKOpdOqYnLh3T0/C6V395PH799g/43blD1cu8uq7Mdv76M8oIuZwOTaClnEzFIEbsR2OVEdIv//W6nKgPak+qPTqkYXTvcI1T3/wMrHtoqmmDQyNfrj+g1myYFUt3zvaiWLcju/jaLxrZHdsPVuHycb2iGk4a1QgZTY0ZTcUp9y3XZYSGdsvGRSN74J3v9uDVb3aot99WUmWZEZnQvyNq6oNYvavUsEZI/7rsdtcWg4hsnxtlNfWajVqNMkJZBm0TjLZUMYolvG6HWhOzdNthHNstR82S6QOYYd1zowL2QEjGBUVLEAjJ+PDmiXA7lf5JQuGyjcyS0h1defxAMKT53NipzxOpGSHdcwdCsmWXdZdTMgyExIyQ1+WAWAalyQjFeK0elwOo46oxImom4vTb4C5ZuGXyQE0foOYwqlcHfDnrZJws9DyKd3NWQLtySr3MIWnGH+nWbZxhscoIHa3WTiHY6bmU4XVptjOJ5cH/rccLC7c13Dc6kwVE/vIXiSf/rjlp+PPPCzFKmNZSGK0aM5oaM3ptakaoJhwQipk5pWnlPqGuZtvBSssplP9cNw65DcfbqEYI0L5PtgMhg6lBvyYjZDAV6HZGZfiMev4Y1bj5XE61Rukvn2/GnW9+r16nDyKG98gxDNjX7i3Dhv3l+HzdAQDR2UY7NULKIgI1IxSSNe+33SJk/e2VAPXUweF/n8EYgZDbEQkM60xWg0U1ZYxj+bxy32RnhBgIEbVRj/1sGIZ1z8ELV41K6jj0+3TdPTU8pWa0JF9htCDL43KgsGcOvC4H+nXKUIMS8WSUL2SEMjxOw+XXRhoTrMXDbI+247rnRE2dGAWBRnw2i6WNpqGUy5TiWjHTZVS3dLjKb1lXJUmSGuis2HHEcJ8pj41AKE33WRELx5VASDwhGzXG9BjsDadfHi/LsmEXaK/bofnszV27X/1ZX9szrEeO5dY4H/8Yvm9jiqWV+yifhXBGKHIs4t20tT4o4/pXV6oF32Lga7VJr5gRMsv06I+1WcBkRPkcJHJD18bg1BhRG9WvUyb+d8ukZA8jKsiYMaEPzhveDT06mPdPMvoCVTJCa+4/Q3NyqREyFeK2HpIkIdvnisr+GDHejiT2l/NVJ/TC/I0HIUnAnqPmm0xmmtQIDeiUiSzdGK0aNYrEDIGy75hxRig6YNLXCIknM7PgMdZxVAKht1btsbweiA7OctPdKK2ux4kD8zWXi0FZJBCKvEajKS+PM9yRWzzB6zNCZidon8upboejF5UR6p5jGUQs3HSw4TXo9vOKZ/m80sMnKGuO3+GqOPpgNfhi/QG1aF98v42OoUKsERKn9MRO1/p/O/piaaul8cp9uWqMiNo0MRByOiSke5zo1THdsg+PUapc+es4zaNrUlkdqffR/3Uaa+8yozHG4/cXDsPi/zsVHdI9lrczmtIDwjVj+poWq0aNIrFmRFnBV2uQKbCaGlP+ehczQnb2vTMSK4Czmhp756YJuPHk/vjjxcM1l4tBmVIEXVcfwt7SGqzaeVTTf0h8Hn1mqaI2gEAwhNeW78L2Q1WmUzZet8M0EBRP8B3S3eiY6bV8zZV1AciyHPfUmFgLpnzm63Vbp5jt4RWL8rrF41NZZx7giqvGNFNews9iDeCFRUuw7WCV5nZWWSHlM5zsVWPMCBFRsxKDkyyfvTobo2JQs5VGVk0qreqERLG6PVuRJEkT1DkdUtQXe6ZQIyRuNdIzLz2qlUJjMkLpXicq6gKa5ngKw0BIdyzTbGSERDMm9MEcoZgaiM586LldkcfVB1v9O2XinrOOib6PcDtxamziY18B0G4pId5H31qgvDaAt1btUfc4W//wVMMxel3m06lKRuSFq0Zj4oCOhq/D6D76qU5lNWe2zxXVV+zUwZ3w8AXHCa9FyQiFEApFxnXYYN8+O5SpRPHfZKXl1JjDcGpMXyytWLO7FGuFBpaBkGyZ7fGwRoiI2gNvjOJgI8YZIeMTlFUg1NwZIYU4tNsmD9RskApoO0Trp6H0gZDdjIwYvCkZJ6MGg4Y1QrrXK47PqEZINO/Ok/Hg+cdGXW5VL6Mfh93j7dRMjYWzbuIUzYodR6Pu43EZZYTq1X2yAPMiXp/bETU1ptSvKBmRHh3S1CxerKCx1h/SHM/6YEit0xnZqwNeuUa7e8Gff16InsK/EZe6akzWTAk2NiOkTIO5nQ51XFZNXt1OST0e2imvEHYcqsL5zy7G8u1HNPcR/wgIhmTL3mVqsTRXjRFRWyae+I/rbq+PkVGq3GmSSbLKqlvtQC8yWoEVD/GE2CHdjXvOGqK5XmyoePnxvXDpmB74x/QxABC1LD5WIKJwC7dTpraMaoSMgg59IBSrWFpk1gw0ViZLfNzGLJ+3G9S6hY13FRW1AU39WNBk+blRRkipA1KyIOLxjDWNWVMf1AS2tfVBNaByOx04dXBn9OskTIVFFc4rq8ZCmh5RjQ2ElHYDbqekPrZRC4LIeCIBkxgI1fhDOOUvCzTBpULs6B4IyZbZHuXYsEaIiNo0zSqpbvYCoUSVDDRlaiye72Zxus/hkKIaRYq/Z3hd+NMlhZg8pAAA8NtzhuKv0wrV6+2uGhPjQqVGyO7yeX1wpJkai/H8XqfxNGLsqbFGNFQUgivDRokGPC4J/+/k/prLKmrrNc0pD1YaFxv7hD5CCqUwWcnkiIFNrOCvpj6oeZ++/ekInvlqqzpOPX3dXGRqTJsRakyxNBBpQOl0SGoQ97ZJcTugWzUmZOK+/emw6X3EmrdgKGQa5DikSOCX7FVjDISIqFl5NRmhbFv3iadmYEpDQDHNoMmj7ZNnIwuEFeLJ0yFJUVMzVtuRZHhdGNsnT/091hSTQgy+0htqkJRmg+Lz26oRiiMjZJbNMbtcmQ5tTB8hcYuNTK/LVv2Sx+nE8X3zcPfUweqxrKgNaALbPUerDe/rdTmhj+eU7EudsiO7yRYoRmr8QU09zfWvrlRbCyjHQ3yEqIxQw2DqgyHNsvTG1ghVClNjbhvvgVsIhMTnN2qPoKjT1RKZBTkup0MN/JKdEWKxNBE1K3EqZVBB9K7yRoymxsy+Kp+YVoivNx/C5CGdo66Ld2pMkuLLBCnEE7RDiu6HE6sjtSbLYHPVmEgJbJSMUKbPpf5sp0YonqkxsyDG6H7/7+R+mNGwPYmdPkJWj+l1OeF1OQx76PjcDnXqSAl+Zp46ACcOzMf5zy5BZV1Ak1Exa3VgtGrscJUfsiyrU0PiVK+dqTGz7spqIKQLokVKoBUIafcEszs1NnFAR/TpmIH/LNsFIFIs7XJItqZgXQ7jYmkrNcJKvmBI1qwiE7kdws72yY2DGAgRUfPK9rnxn+vGIc3jjFrebiae5bTZPjfOGd7V8Lp4i6XT3E71RBtPQCROaUiShDSPLtAw2INNJJ6U7NYIae7fcMJUiqUzvS51dZrV8nmFGLhZZTlcwnLq6DFEP8+vThmgvgfaPkL2PgfiWHxuh2kglO1zo7Y+/HrFTIcyTVNRG9CcyN9bvdfw+bwGfYSOVPk1WQ5xWtGqBQQAXPz8N6bXKe+BVUZIOWZbS7Sbxsbq6fTCVaOwbPsR3HRyf3TO9mHH4Sos2XpYDY5dToetonyXU4KE6KkxK9XC9Oz3u0vxwIfrDG/nFD5LyZ4aYyBERM1u4oD82DcSGGaEGpGqGdLV3lScUiPkEwKheIixg1OSogI+fYZIz25dkOnzN2QmlKyIuKWH0QnPamrMaMd3q8dSrzMICsSgSZzycxvUxxiJzgg5AUQHATlpbnUjXfG1KdnIyrqAZnXU6l2lhs/nM8gIHanya7IxdoP5WIwydfrnNguKS6utM0IDOmfizOMifxzou5CLxdJWxPfb7j8/8XZiZ26jx1anxlgjlHqKioowdOhQjB07NvaNiSjhElUzMLp3B3xzz2kxbydmhBR2OksrNFNjjuganVi1LXbrgkyfv+Hu6tSYkIEyem6rjJA+oBFva5WtMtsfTn1c4XG8NgM/MSjzuR2mq/vEonhxvB3SPSho2DtN3/fIiNfljCqWrgtEdmh3OiTb7Q1iUd5z8en0PbbMnivWHl76rJb+uImrway4HJJpp219wb2+ZQRgHTw5HZK6nQn7CKWgmTNnYv369VixYkWyh0LULiXye1HZwNKKcvJs7DJ6h75YWsiw2JnpakxdkNjNWgkYxKkxhVEmLbpGyDxwEoMWp0XAZhTMiY/VmBoht2ZqzGnaf0icAhWDB6dD0jQojMXndkRNdwVDIXUPN18C96SLFEubH9M49vjViAqEdBkhl82ATuw3pNctN03zfozvH531tfpjwu2MrNBjRoiISOf4hlVUYhFvc35VegwyQlYnKD1tsbSkmYow+4ta1JiM0CWje+D8wm740yXD1ZOVkrkQN3nNy4je/iNq+bzHvEZIDA6NejkpFxmdWMXbN6aPkHhcw4FQ9LSUJGkL8vXHcmTPXM3vHQ2Oh8IoIxQIyeqUozdB02KAUCNk8dbnxti6xYz+M6efhnM57QVC4vJ5vYJsr+Y9FbunK6z+oHE5Ix3Zk10szUCIiFLOb88dgrunDsbHt57YIs+nnBR8jZwac+gCIU3xtI37i1Midp/X43Lg6ctH4tIxPdXnUzJCPpcT7/1qAl6/4QTDk6m+WFlTLK3LToknUaPiYOUSo5oTh8nUmO0+QppAyGGYETqhb0fLbJO+p1OmSUNIIJxJ0yfngkIPn+bICFnpnpuGl64eY3q9WZCifw1RU2NOh+Zz9s5NE3Bst+h6OpcjutO2omtOmub50yxaRBhxalaNMSNERKSR5XNj5qkD0Efoutyc35XKCdfndqCwR7jp489HR/clMqOdGjO/rrko41dWN7ldEkb26oAT+nU0vH08y+e9buul9crri7WUXBus2F01JtQVuZzYVFwRdZufj+mhyarogyx9cXOmyQo+j8thuMWGmBFKVKG0OM5Ye+9NGVpgOr1qtioyempMe0zcDklTAF7YI8cwqLIqqi7I9mneH6Nieat/sm5H6hRLc9UYEbUKif6qzPK51O0T1J3t3U78/eox2HKgEsN72OuCDWhXjUVlTZo/Doo6icXKNugDIXFqSf9YmoyQwUlbuSye3eftTgXqM0LZaW5U1AXQLceHS0b3QHF5Lc4v7IZvtkU6Hetfu9vpgNspqY0NxdfqkCLTMrlpbkhS9FRQMCSrNUJ2p/TsiGc6NN3jMtwKIyfNbdhTKGaNkNOhaQngchpnflxOh6YhpKhrjk9zrIzqx6wyPQ6hWJqBEBFREvTvlIk1u0sBQF1Z1CXHh3SPC4W6upJY9FNjmutaICNkFbwY0Z/QxToiqxoho2BHeXmxWgCIJ/5G1Qi5nPjzJcPx2ord+O05Q1CQ7VOvE0+4Ro+d5naiPhgOJDK9kSyK2C5B2YLDqEaozqCZYlMpWTE7n440j9M0EDISNTXm0k+NSZoGk4DxNJvbIaHeJB3VOUtbI2SUEbTK4jqkyHM2pjVGIjEQIqJ2aUjXLFw9vjc6Z/lwQr88vHLNWIzq1aFRj+W0mBprgTjItBGfGTFQys/0aKZn9DVC4knUqFg6MjVmPyNkd/d5JbjyNPScmTAgHxMMelKJDfmMpu/SPE61j5CYERIbNCpBheWqsSZuzisyWj5vxqwPld2pMX1w6HJIUZ2ijd5bl9MBp8O4kWJuukebEYqzEagkRcbJLTaIiGxI9F+NbqcDPxvVQ/391MHRW3TYpe0jpD0h2D099O+UgW0Hq3BKI8ah31w2VsZFzM7od2qPyi6JgZBhjVD4/7EyQuLjxLvFRqzASZxZMaq5CbcHCDdcFGuE0txOHG1o0KistDNeNaYEQi27akwcpyLTG5kmEzeSFelfQ1RGyKGdGgOis0iAdmWXnn5qzE6DRpGEyDSkzabVzYaBEBG1S43p3WMmEVNjn95+EqrqAo1aMt1XKCoHYmeExGChU5Y2ENKf0PR9eRTnDOuKuWv344aT+jfcLp4aofimxmItW4+16kgMYMRVY+LlSiAUnRGSUdsQNNjNZNkRT2NGn8c4EMpJc6NPx3TU1odQXF6r3ia6oWJ0Z2l9IGQ8NWbcR+j2KQPRJz+jyRkhdYsNZoSIiMydV9gN//t+H246uX9CH9fuNg92JGJqzO10NLpvTP9OmbrHsv/a9BkhMUB0OyXNaxNPdk9MK8S1k/piREM9VawTuxhg2e3RpLyOWFNSsU6kacL9xakxMTOV2bD8W//+hTc8TXxGyE5DRUW6PpArjzzGJ7edhJAso/Chz9WO01LMGiFHVIGycbF0dGfp0b074PYpg8LPL3xW4t0jT0Lk30ayi6W5fJ6IUtpT00Zg5W+nGNaGNEWs5d7x0PxlrDtxZPvsbfzaFL07pmuXkMeRucjP1AZfLt1f+Q6Tv/q9LidG9+6gXhZz13ohULIbHCods2MFIKEYUyti5+wsr3FGKL2hIaD+nBzuI9RQLG1z2b8drjhqhAZ3yVJ/Fqf2XI5wF/MMr0v7PtmoEdIzyugY7VJvNg1stUedEUliHyEiIlscDikqa5EIWRaN9eIl/tWsTDsVXTEKfTqm4+nLRybsecz43E707BDZ6ymeaZdeedo9ojQbpTocumyX+Vk79qoxIRCyOTalADt2jVDjpsbEzFlGQ7Ck3wldWyOUuFOm8jx2jsWdZwzCpWN64D/XjdN8bsUsm9X7pF8+H6sLuEKSomuExNuJ3aTjzgiJU2PMCBERtZy7pw7GiJ65uPKE3gl7TPG8opwPzhneFQvuPhXHdbffj6gp+nWK1AnZOSndPXUwThyYj5+P0TaOFE+S+i0WrB431nScJuNg85zZuaGtQdccn+XtYp1H0zQ1NpEMnTgmpUZIv4IpGAqpGaGmbLGhjzP0q7asZPnc+NMlhZg4IF+XETKu39I/lz6QNCx6N3lv9bcVg69HLxqGbjk+/OGi4xpRLJ06q8YYCBFRuzLz1AF4f+ZE0w7DjaHpLB3nX8aJct7wbvC6HOiVl27aUVo089QB+Ncvx0VNOzl10x0Ok6kQvXiKzzNsbscwqlcHvHrt8Xj0Z8MsbxcrI5SuW3WlEF+rkt2wzAjZnHIc0jUbXbK1wdu8WSfjt+cMUX/3K0ul4uyvINaRicGn+NZEbZyr7yztlPD4zwsBAE9dNiJ8H5Nx6INf8bM+sCAL39w7GVeO692IjFCk/oirxoiIWjmrVWMt5eLRPfCzUd1jbtkQi8uhPbmKf+hbnew8NorP7z3rGOw5WmO7a7ckSThpUKeYt4s9NWZcLC3WtWQ11HJFZ4QigZDdjFCHdDfm3jIJx/zuUzXg6dcpE/06ZeL3czcAiBS4x/tu9eiQZjh+/ca/Iv24XU4HLh7dA+cM76oGwqb7lukey+wzEHeNECKZ1GRPjTEQIiJqIqtVYy2pqUEQEL183qxY2uDZYz72/0vwyj9FrPOoeJIWM0IOCfjFCb3x3a6jOPO4LgCiVzBpdp83yAhdPb43Xl26E7npbpRW1zc8X7i2xumQAG0DZ8y9dRJ2H6lWp0zjfcvEQEjMCDkd5p9BfadxpfZKzAaaZfuiMkI2bxeLuDlxsoulGQgRETVRKmSEEkU/xWW2fF5PPJldOKIbzh3eLfGDMxGr2aYYB4gZoZAMPHLhcZrb6gOhYEjYfd4gI/TQ+cfi5lMH4LkF2zDnmx0AIp8Bo+N1bLccHNut8XVjPYSieJfJ504fEBvtPq9nVuKjD3zMM0Jxfu6lyGcr2TVCDISIiJrIbrDQGujHb9UaQCRe88SlI1q0VipW8ClenyFkhIymZKwyQkaBkCRJ6Jyt24C04Wc7hyDeo9RTyAiJrD53RnuN6VnXf0lqj6JEZYTCU2NcNUZE1CaIf2C38oSQ5oQmSfanxgZ0zsTkYzrj0jE9Wrxg/P7zhqIg24sHzhtqeL04bnGayKiRn36axu5eY0Y1OrFaCgDxT2eKrSQOVtZFPaeRqOXzBvU8+iBX3L5DfD8TlRFySJL62k02uG8xzAgRETVRW5oas5oKsTrZSZKEf8wY22zjstK/Uya+vXeyaVBh1gTQKBCKyggFxS02zIulHZqsYPRlZuL9tIjj318W2VbD6r3R70lmdFvxslMGd9L0v9JkPM1Wl8W7fF4oxE92jRAzQkTU5nVu2E+rZ57xtEJTtaWpMb1UaA1gh1VmxSwgMToB67MTQc0WG1YZIfFnKeoyM+P7d9Tcx47eHcN1QpOPKYh6TiNup0NTJG7U80l8bwd2ztR0RLcTDMe7d18qNVRkRoiI2rzXbjgBzy/YhptPHdAsj2+1Yqc1E3cIB+KvA0kVZidvoyJd/Uk5GJLV+hirrT7ElWnq1JiN4GDmqQPQKcuLk220CVB8MHMiNhZXYFzfPOE5re/TPTcNmw5UADAOGp0WAa+d6dG4N11FZNVYsvcaYyBERG1e/06Z+EtDA7nmYLVip7WzWyydyvTNDRV2psb8wRDKGpbFW+0bZ5QVtJMk8bmduHp8n9g3FOSme6KaZsYKRLrl+tRAyIimIaNF7yDTjFCjpsZSY/k8p8aIiJrI6iTS2jnawLTfz0Z1xxXjeuEZ3b5vhoGQ7qS852gNKuoC8Lkd6C9sY6KnmRpTls+34GchVj1St1zraWGrrI+djJBVtvDtG8dHXabtLM2MUMopKipCUVERgsFg7BsTUbtn1dW3NQvXcUR+b62BkMvpwKMXRW/TYbhqzOSkPKx7juUqMHFqTMkKZiRwG5dYYmeErAMhp0VW004NnFVn6ey06EyaBAgNFS2H1uyYETIwc+ZMrF+/HitWrEj2UIioFRD/Ym5DcRCAtl0IblwsbXxWHtEz1/KxtAFj+P+PX1qIHh3S1H29mlOs92bSgHzb99dnsuxMj1pvyBsdajiEIDvZU2PMCBERNVFbDhbsb7HR+hhlhK4a1xurd5Wic5YXJRWRPj3DeuRaPpbRFOIxXbKx+P9OS8xgY4iViSzsmYuXZ4xB1xzjzJD2fdZepwmETGqBrFetRV/HqTEiojakLfUR0mvLQZ7RCfhno7pjSNdsOB0Spj65SL0812B6R5Ts6VE7781pwnL7qPtbrBpzxZkR8rgc8AciW8rr9zoDtJ2lkx0IcWqMiKiJUmXT1UQT6ziAtlcIbjQNJkkShnbLRrpHu1TeY7Dhqshu48nm0tT3xiqYt9NZWqyfsnPsxIxQkmfGGAgRETWVU1Mj1LaCBaM9tNqKUMj8Ov1ycKOd50XJzgrG2c8wilX3aG1W0PiJxM9Guq7fklGNkCRFjlOyN11lIERE1ETieaOtBQvtbWpMoX+tsTJCyT5OTX1OMVbRT405LeqHFGKmKM0TOxC6eFR3To0REbVFbSlWkCSpbRdLW2Qi9F2hrfYZA5KfOWtqFkqb0dJep31tNjJCHm35sb5Y+qNbJmHqsV24aoyIqC1qc1NjbTjblWnR50f/WmNNjbWGYmnL+1tktOLNCOmPq/7fxHHdcwAgZVaNMSNERNREUhuePmoLW2zovXT1GAwuyELRFaNMb6MvCo4nELKz2WqiNfW9sQrk4s0I5WV6kJ/pjfmcyvOwoSIRUSsnnjbaWByknRqLcz+pVDVlaAE+u+MkDO2WbXqb6IyQ9dSYw6LYuCXo63rivr9VRkjz2ozvL0mRDXq9TgduPrV/zOfk7vNERG2EeN5r032E2thrs6LPCMWzfL6pQUljJDYjZH6d0yLd5XJICIZkeFwO/GJ8H1TUBtCvU6bp7VNl1RgDISKiBGprgVBbLpa2Eu+qsWT3W2rqe2O1/N/u9KjLIaEO4VViToeEWyYPtHzOVMkIcWqMiKiJJJj/Nd3aJXtZeLJEbTwa47VbdWZuCU19Tqv3WQwCrfYUU+4XK2iM3D78/2RnhBgIERE1UZueGmunGaF4ifVTyeks3cT7azaN1T5Y56xI4bNVwKV0l7YbCElqsTQDISKiNiMZ2YDmMqggs91OjcUr2bVUZqu57BIDeH02rCDbp/5sJyNk1EDR8PZKIGTR4bslMBAiImqithYefHjzREwb0xN/vGR40k/wrYWm2DgJAeOsMwYhP9ODW2PU5ZixqgPqkhMJhCwzQsqqMdtTY6nRR4jF0kREpDG8Ry6GX5ILwHrKhCIcNpaYN6fuuWlY8ZspjW7oadUHqUucGSGj3eaNpMqqMWaEiIjIlFV/GYpwJblGCGhaV3O7U2NWNXAudWrM3jiU4yQzECIiat3a8owRi6Xtvb9WgURrYHdqzKqwOVIsbd18UqE8ZbKnxhgIERE1Wes78dnFYml7tVGtPWC0yvx1SHerPx+urDN9DCUjZHfVmCNFaoQYCBERNVErTADYJgYBVvUhbZmdwMZlkVFpDayKvcUMV7U/GPMxbE+Nca8xIiJKdcneVT0V2AmExGPTGlsoiPXNRsOfdfogDOyciWlje5o+BleNERG1U6N7dwAAZHjs1Ua0JiyWtve6k737fFPF2jT21skDYy7NH9EzF5sOVOCYLuab2YrSPE6cPKiT7cCpuTAQIiJqovxML1b+dgrS22Ag1NprXxLBzpSgNqPS+o5TIvogPXj+sbjnrCFIs/nvID/Ti39ee3yjniuRGAgRESVAfqY39o1aIfYRspsRcgg/t77jlIg95SRJsh0EpZJWmMAjIqKWwqkxm4FQK+/Ard19PokDSQIGQkREZMqqv0x7Yed1i1t9tc5i6fZbFM9AiIiITIknRVcy9o5IAU4br9slTo21wkCiPWf+GAgREZGp9pwpULhs7OzuaOW1VO35fWYgREREpsQTpJ2AoC2Kt0aoNcYR4vgZCBERETXQNgpM4kCSKN4tNlrjXmOtPaPVFO30Y01ERHawj1D8DRWTvZt6Y7T2hpBN0c5eLhERxaM97zV239nHwONy4NGfDYt529YeJGqn9lr3a4kXGyoSEZEpRyvvmNwUN5zUH9dO7AuXjRRJaz82jnbcJoEZISIiMtXei6XtBEGANlvW+ibGEtNZurVq85/q3bt345RTTsHQoUMxfPhwvPXWW8keEhFRq+FksbQtmuChFUZCidhrrLVq81NjLpcLTz75JEaMGIHi4mKMHj0aZ599NjIyMpI9NCKilOdgsbQtrb2upj1vsdHmA6GuXbuia9euAIAuXbogPz8fR44cYSBERGRDe+4v05609r3SmiLpic5FixbhvPPOQ7du3SBJEt5///2o2xQVFaFPnz7w+XwYN24cli9f3qjnWrVqFYLBIHr27NnEURMRtQ8MfuInt8K5MTEL1N6mxpIeCFVVVaGwsBBFRUWG17/xxhuYNWsWHnjgAXz33XcoLCzE1KlTUVJSot5mxIgROO6446L+27dvn3qbI0eO4Oqrr8bf/va3Zn9NRERtUfs6PbYzkuGP7ULSp8bOOussnHXWWabXP/HEE7j++utxzTXXAABeeOEFzJ07Fy+//DLuueceAMCaNWssn6Ourg4XXngh7rnnHkyYMMHydnV1derv5eXlcbwSIqK2R9xw1O4KqvYu3ZP0U2vcpHYX/kSk9Kfa7/dj1apVmDJlinqZw+HAlClTsHTpUluPIcsyZsyYgdNOOw2/+MUvLG87e/Zs5OTkqP9xCo2I2rtMrwt3TBmEWycPRF6GJ9nDSWm/PWcILhvbE+P65iV7KBSHlA5bDx06hGAwiIKCAs3lBQUF2Lhxo63HWLJkCd544w0MHz5crT/617/+hWHDojuF3nvvvZg1a5b6e3l5OYMhImr3bpsyMNlDaBWuO7FfsofQaB5XJC/idqV0jiThUjoQSoRJkyYhFArZuq3X64XX623mEREREaWWnDQ3Hjr/WMiyjGyfO9nDaVEpHQjl5+fD6XTiwIEDmssPHDiALl26JGlUREREbc/0CX2SPYSkSOn8l8fjwejRozFv3jz1slAohHnz5mH8+PFJHBkRERG1BUnPCFVWVmLr1q3q79u3b8eaNWuQl5eHXr16YdasWZg+fTrGjBmD448/Hk8++SSqqqrUVWREREREjZX0QGjlypU49dRT1d+VYuXp06djzpw5mDZtGg4ePIj7778fxcXFGDFiBD799NOoAupEKioqQlFREYLBYLM9BxERESWfJMty62uB2ULKy8uRk5ODsrIyZGdnJ3s4RERErVKfe+aqP+947Jxmf754zt8pXSNERERErd+/fzkOvfLS8d/rxyV7KFGYEbLAjBAREVHrw4wQERERkQ0MhIiIiKjdYiBERERE7RYDIQNFRUUYOnQoxo4dm+yhEBERUTNisbQFFksTERG1PiyWJiIiIrKBgRARERG1WwyEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG7xUDIAPsIERERtQ/sI2SBfYSIiIhaH/YRIiIiIrLBlewBpDIlWVZeXp7kkRAREZFdynnbzqQXAyELFRUVAICePXsmeSREREQUr4qKCuTk5FjehjVCFkKhEPbt24esrCxIkpTQxy4vL0fPnj2xe/du1h81Ix7nlsNj3TJ4nFsGj3PLaY5jLcsyKioq0K1bNzgc1lVAzAhZcDgc6NGjR7M+R3Z2Nv+RtQAe55bDY90yeJxbBo9zy0n0sY6VCVKwWJqIiIjaLQZCRERE1G4xEEoSr9eLBx54AF6vN9lDadN4nFsOj3XL4HFuGTzOLSfZx5rF0kRERNRuMSNERERE7RYDISIiImq3GAgRERFRu8VAiIiIiNotBkJJUlRUhD59+sDn82HcuHFYvnx5sofUqixatAjnnXceunXrBkmS8P7772uul2UZ999/P7p27Yq0tDRMmTIFW7Zs0dzmyJEjuPLKK5GdnY3c3Fz88pe/RGVlZQu+itQ3e/ZsjB07FllZWejcuTMuvPBCbNq0SXOb2tpazJw5Ex07dkRmZiYuvvhiHDhwQHObXbt24ZxzzkF6ejo6d+6Mu+++G4FAoCVfSkp7/vnnMXz4cLWh3Pjx4/HJJ5+o1/MYN4/HHnsMkiTh9ttvVy/jsU6MBx98EJIkaf475phj1OtT6jjL1OJef/112ePxyC+//LK8bt06+frrr5dzc3PlAwcOJHtorcbHH38s/+Y3v5HfffddGYD83nvvaa5/7LHH5JycHPn999+Xv//+e/n888+X+/btK9fU1Ki3OfPMM+XCwkL522+/lb/++mt5wIAB8uWXX97CryS1TZ06VX7llVfkH3/8UV6zZo189tlny7169ZIrKyvV29x4441yz5495Xnz5skrV66UTzjhBHnChAnq9YFAQD7uuOPkKVOmyKtXr5Y//vhjOT8/X7733nuT8ZJS0ocffijPnTtX3rx5s7xp0yb5vvvuk91ut/zjjz/Kssxj3ByWL18u9+nTRx4+fLh82223qZfzWCfGAw88IB977LHy/v371f8OHjyoXp9Kx5mBUBIcf/zx8syZM9Xfg8Gg3K1bN3n27NlJHFXrpQ+EQqGQ3KVLF/nPf/6zellpaans9Xrl1157TZZlWV6/fr0MQF6xYoV6m08++USWJEneu3dvi429tSkpKZEByAsXLpRlOXxc3W63/NZbb6m32bBhgwxAXrp0qSzL4aDV4XDIxcXF6m2ef/55OTs7W66rq2vZF9CKdOjQQX7ppZd4jJtBRUWFPHDgQPmLL76QTz75ZDUQ4rFOnAceeEAuLCw0vC7VjjOnxlqY3+/HqlWrMGXKFPUyh8OBKVOmYOnSpUkcWduxfft2FBcXa45xTk4Oxo0bpx7jpUuXIjc3F2PGjFFvM2XKFDgcDixbtqzFx9xalJWVAQDy8vIAAKtWrUJ9fb3mWB9zzDHo1auX5lgPGzYMBQUF6m2mTp2K8vJyrFu3rgVH3zoEg0G8/vrrqKqqwvjx43mMm8HMmTNxzjnnaI4pwM9zom3ZsgXdunVDv379cOWVV2LXrl0AUu84c9PVFnbo0CEEg0HNmwsABQUF2LhxY5JG1bYUFxcDgOExVq4rLi5G586dNde7XC7k5eWptyGtUCiE22+/HRMnTsRxxx0HIHwcPR4PcnNzNbfVH2uj90K5jsLWrl2L8ePHo7a2FpmZmXjvvfcwdOhQrFmzhsc4gV5//XV89913WLFiRdR1/Dwnzrhx4zBnzhwMHjwY+/fvx0MPPYQTTzwRP/74Y8odZwZCRGTLzJkz8eOPP2Lx4sXJHkqbNHjwYKxZswZlZWV4++23MX36dCxcuDDZw2pTdu/ejdtuuw1ffPEFfD5fsofTpp111lnqz8OHD8e4cePQu3dvvPnmm0hLS0viyKJxaqyF5efnw+l0RlXHHzhwAF26dEnSqNoW5ThaHeMuXbqgpKREc30gEMCRI0f4Phi4+eab8dFHH2H+/Pno0aOHenmXLl3g9/tRWlqqub3+WBu9F8p1FObxeDBgwACMHj0as2fPRmFhIZ566ike4wRatWoVSkpKMGrUKLhcLrhcLixcuBBPP/00XC4XCgoKeKybSW5uLgYNGoStW7em3GeagVAL83g8GD16NObNm6deFgqFMG/ePIwfPz6JI2s7+vbtiy5dumiOcXl5OZYtW6Ye4/Hjx6O0tBSrVq1Sb/PVV18hFAph3LhxLT7mVCXLMm6++Wa89957+Oqrr9C3b1/N9aNHj4bb7dYc602bNmHXrl2aY7127VpN4PnFF18gOzsbQ4cObZkX0gqFQiHU1dXxGCfQ5MmTsXbtWqxZs0b9b8yYMbjyyivVn3msm0dlZSW2bduGrl27pt5nOqGl12TL66+/Lnu9XnnOnDny+vXr5RtuuEHOzc3VVMeTtYqKCnn16tXy6tWrZQDyE088Ia9evVreuXOnLMvh5fO5ubnyBx98IP/www/yBRdcYLh8fuTIkfKyZcvkxYsXywMHDuTyeZ2bbrpJzsnJkRcsWKBZBltdXa3e5sYbb5R79eolf/XVV/LKlSvl8ePHy+PHj1evV5bBnnHGGfKaNWvkTz/9VO7UqROXGwvuueceeeHChfL27dvlH374Qb7nnntkSZLkzz//XJZlHuPmJK4ak2Ue60S588475QULFsjbt2+XlyxZIk+ZMkXOz8+XS0pKZFlOrePMQChJnnnmGblXr16yx+ORjz/+ePnbb79N9pBalfnz58sAov6bPn26LMvhJfS/+93v5IKCAtnr9cqTJ0+WN23apHmMw4cPy5dffrmcmZkpZ2dny9dcc41cUVGRhFeTuoyOMQD5lVdeUW9TU1Mj/+pXv5I7dOggp6enyxdddJG8f/9+zePs2LFDPuuss+S0tDQ5Pz9fvvPOO+X6+voWfjWp69prr5V79+4tezweuVOnTvLkyZPVIEiWeYybkz4Q4rFOjGnTpsldu3aVPR6P3L17d3natGny1q1b1etT6ThLsizLic0xEREREbUOrBEiIiKidouBEBEREbVbDISIiIio3WIgRERERO0WAyEiIiJqtxgIERERUbvFQIiIiIjaLQZCRERxWLBgASRJitoniYhaJwZCRERE1G4xECIiIqJ2i4EQEbUqoVAIs2fPRt++fZGWlobCwkK8/fbbACLTVnPnzsXw4cPh8/lwwgkn4Mcff9Q8xjvvvINjjz0WXq8Xffr0weOPP665vq6uDv/3f/+Hnj17wuv1YsCAAfjHP/6huc2qVaswZswYpKenY8KECdi0aVPzvnAiahYMhIioVZk9ezZeffVVvPDCC1i3bh3uuOMOXHXVVVi4cKF6m7vvvhuPP/44VqxYgU6dOuG8885DfX09gHAAc+mll+Kyyy7D2rVr8eCDD+J3v/sd5syZo97/6quvxmuvvYann34aGzZswIsvvojMzEzNOH7zm9/g8ccfx8qVK+FyuXDttde2yOsnosTipqtE1GrU1dUhLy8PX375JcaPH69eft1116G6uho33HADTj31VLz++uuYNm0aAODIkSPo0aMH5syZg0svvRRXXnklDh48iM8//1y9/69//WvMnTsX69atw+bNmzF48GB88cUXmDJlStQYFixYgFNPPRVffvklJk+eDAD4+OOPcc4556CmpgY+n6+ZjwIRJRIzQkTUamzduhXV1dU4/fTTkZmZqf736quvYtu2bertxCApLy8PgwcPxoYNGwAAGzZswMSJEzWPO3HiRGzZsgXBYBBr1qyB0+nEySefbDmW4cOHqz937doVAFBSUtLk10hELcuV7AEQEdlVWVkJAJg7dy66d++uuc7r9WqCocZKS0uzdTu3263+LEkSgHD9EhG1LswIEVGrMXToUHi9XuzatQsDBgzQ/NezZ0/1dt9++63689GjR7F582YMGTIEADBkyBAsWbJE87hLlizBoEGD4HQ6MWzYMIRCIU3NERG1XcwIEVGrkZWVhbvuugt33HEHQqEQJk2ahLKyMixZsgTZ2dno3bs3AODhhx9Gx44dUVBQgN/85jfIz8/HhRdeCAC48847MXbsWDzyyCOYNm0ali5dimeffRbPPfccAKBPnz6YPn06rr32Wjz99NMoLCzEzp07UVJSgksvvTRZL52ImgkDISJqVR555BF06tQJs2fPxk8//YTc3FyMGjUK9913nzo19dhjj+G2227Dli1bMGLECPzvf/+Dx+MBAIwaNQpvvvkm7r//fjzyyCPo2rUrHn74YcyYMUN9jueffx733XcffvWrX+Hw4cPo1asX7rvvvmS8XCJqZlw1RkRthrKi6+jRo8jNzU32cIioFWCNEBEREbVbDISIiIio3eLUGBEREbVbzAgRERFRu8VAiIiIiNotBkJERETUbjEQIiIionaLgRARERG1WwyEiIiIqN1iIERERETtFgMhIiIiarcYCBEREVG79f8BW3suNgSCF34AAAAASUVORK5CYII=", "text/plain": [ "
MESkq7`OAnQ?=Am-7l(oK24pp#atR3!^
ztmAcJsETz0tY%#RYdHIOZDufR!HAA6gmQIk5qx9Va<&AX>RH_&;jVa$in(=)dEof*
zBmF!d;uZSDv4c2w$W1DSeF4uX2L&kBBXEjY@C7)Q^9vsI&F?wO`6I^m4*2GY6sY$O
z-g9BthiZi*j`S;BkYgj&D~fcmlV|-tFSH$gOadxi1Tq%|89n@cDFC=m2zlSev-$Vo
z+lTO{UV l
zHr^+H-2Jg%>Nz0y9JoKS*mGQjbaF^Mby_}oMjZBvEGG|-ES?+@Pmav42cV|a4aC2Q
zDdxWc!{z@5foU{)%{21gf>(dU{C$X8$jo1@N5m;{^as5Qu}#|8
zFK_I>Z(Q7XNQ5+aTs-l0dGJLMrtsxq`Q$5$gRh8#ugty*Kus&>521 #l6+DcCeQ9t>6U7;t@OeI(U`9
z>uv0E>?^q8+lMf6S>lxuuBAt%pa@Q=SF{xzKt7JcNBbLDH_b~5gYvP~FDK=}7_VX%
zW9X?IYv4FOfRQF+$9li=f6Jyn4(UxK<7CKBh+hTL)gNg6YEp$!mw&9!YkX$cIAY@8
zj@aHmlB@@l3BEL#;x%45);TEp6UoHc$gU3RKk(W9L|`Wqyaqi_$myLKKF8;uFn$j2
zll**tDw*Q?t_j+VYYwZR9ZukxB#j*Dkr^+M4w7mnb6MM&&EBxyg(rG{Ix%?#{7jsq
zDd_Llkow$_e()bd4c^7 gHcS
zUtg{M>m&ab`$4x#pFjp+o>eXTRQpA+gJVEH8wPWX#xqj2KyMM#@f+A~g>N*Aa3mB7
ziK+ux&rnH(e)*}77XET vXGC0lBN_YZ&yfR`B5X^p~SJ6LC%z~!kLu+}K$9Tf^hgI13HxBW^`
zC2{K1Zj)-xsrnjvWV<4*sCFR2MQV%8qdL?byaT}8rrBugw<6qv?wzJ+pKF8QX9w9m
zc<0`x1y8s7S1DWUwpBOH(f^#uVVkM#dbVa-rqtanX|}n8w$bKwg;HcIFB=^#-&RlE
z)#}f7Hu`o?-nq%x%bH! @KV@+XxtB^>-20vA&9fR_M5f=DeZoCHE>Cz
ziCNZC--_|3yqHboC~bJgIu>(cUKQMC(pk44+3scPy7IKBZ9 iQ9bn@CPq}6uf{TxysXbAB}<$%PkNP?oiy(PvV85XMlY{$
zG$Y7oPezI&p}mbbtHi~W7=dEdS1dAbS{;W!XhJ9+k8SfpM$c<%v%>LNWNXVKJLRfM
zjr)=)EoNuX2iK96T+o14RUZSOFo`NNH6CpfOMMU*cCMVliRM1iGo$$snbcqU?azAZ
z_=UtIbUPB-ZU1tVmNR*llm19gFO%e8v7KvJLyY_j>;89FrKM@iVq}zvz^j;^)y1g%
zg=Y0p;@bpE-PCIrha`l&_E=q1_dZP2hZ)u-`iQvx%%?Gfh9C@g4cb;>MolY5?N{8!
z&6p`_Vol$sVzhvkFMW+8;>1@XkK{7%fcQw3Mk7+kmChT{n{*z3y=&I?7}tlrW
Y2iXxopOgOd$}P?&3{k>Fcnmi!t29W7c>Pudnq;v~V^
zVwTq|GuPGo1yU&1w7(^0&2OKz|BfE;tY}vfRvM9C`eGfc_HTX78l<6rxL+VI5Eu0)
z3BV)E_%Q3vXlCYD%+&J!qUJ>23S@eQkwZ2oYGSsiEn&}n&E;5^7RQ(!T6E;T=W^N>
zVWf4rZ{w~^o-K&lwK&Ece;9qmoI;j<2x7b-(_+-g7Tzt=wn-9E2T;83%$k@h>SBvo
z+c$I-nF<73at`wwPtFuRgAekkDqD?+E}M%)QSMtV2V0s$iw&FCcdQ^<@Tc^74od}I
z&z8jsf`(`TTZ-s7Rv@@@7>t)>@@)Ct3hnx_mAHH%TNNvc7O}c>nD^r(|E*_WwYo%b
zra8X=^K0QsUW$|9Q^5UsR2$VtT`S80owQ}Jg;mXRN2WBaZMAkbW5rR5b>LA@AYqGw
z{{&K?GuH-4fkVrrz$)0XHK+w)L#|%5NIO%j;<_nUe!MD^XREX|f%=L7L$pB`WhKhL
zWF^X$Og(}CTo3={;Tk7r92smg@(0#(TMqA>N)|01&+@r;7GfpQk_3~hlgk0es{6?^
zsfQ$jn_yLU=jveDUaFy|Ra#+dqoonp*;ZRSyb`6am15Zn_nd6i(o;TH%zrDcn`w;e
zXWoUs&o#YMu#?xJ{e0za&e}lTVj?}GoWOYeen!U2
F&B;!!AeB2J}Th1aaJeRCT{SEuCalwF;W
zNmju;wG_be1Bmw~%d2L0&-Tvt-k=lxi{);y+?_0EQZ;oqUVK>7wpi0P=ap)@
xG_}^Zbo3g(ZtDHwYO{I`{Vl`71zGk
zkPzl}-M*0U-D
y#mT*nuUzVtn3Qv~kkc`hFWg}}Ai6W@K
XXd>N<#1eRct|9k>KJ;l2v*UjNAcecq
literal 0
HcmV?d00001
diff --git a/collectmeterdigits/__pycache__/labeling.cpython-39.pyc b/collectmeterdigits/__pycache__/labeling.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32f68eadde61c7f80995a3fc685d095b65e86a97
GIT binary patch
literal 6105
zcmb7IO>7)TcJAuG=@|}(KjNQcSsqJT+hdueWM}1AkxZ}U-(8t2Tk`I@!z|sL>KQiK
z(>#`8$eo!M#8KY$i+br3^zH1mz FVumxjD4SiWCw=fpmu`q+^oAzAENdzxa#hjlwT}H8_HwFDMzr8(2DZNU=fOO4`=t
zxz}F(CQKcRZumm&2;$zvD6v3*1kWbfttJAg->3GE_+O5)wX?IRnDu}7uNRhn^7p^a
zi2Z%
gl5Z9TQB1xlr;B+(QkCReSk7WDpU(+ckdiOw
z)K`j^laf%xoS2XVbza7E2@4V+r)9`OzzHmHyj)b1J7JTAJosE%9V;xFU82nKsrG~d
zkV}vxwG3(M>8+mpA~yI?5d
zCKsK{=DZ>Mh|C2VMh&h_gKWG6n-XNu+T4!