-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathICP.py
86 lines (64 loc) · 2.56 KB
/
ICP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import itertools as it
from collections import namedtuple
import numpy as np
import scipy.stats
import sklearn.linear_model
def all_parent_sets(S, max_num_parents):
return it.chain.from_iterable(
it.combinations(S, n_parents) for n_parents in range(min(len(S), max_num_parents) + 1))
def f_test(x1, x2):
"""
Perform F-test for equal variance.
"""
F = np.var(x1, ddof=1) / np.var(x2, ddof=1)
return 2 * min(scipy.stats.f.cdf(F, len(x1) - 1, len(x2) - 1), scipy.stats.f.sf(F, len(x1) - 1, len(x2) - 1))
def test_plausible_parent_set(X, y, z):
n_e = len(np.unique(z))
environments = np.unique(z)
lm = sklearn.linear_model.LinearRegression(fit_intercept=False)
X_with_intercept = np.hstack((X, np.ones((X.shape[0], 1))))
lm.fit(X_with_intercept, y)
residuals = lm.predict(X_with_intercept) - y
return min([2 * min(scipy.stats.ttest_ind(residuals[np.equal(z, e)],
residuals[np.logical_not(np.equal(z, e))],
equal_var=False).pvalue,
f_test(residuals[np.equal(z, e)],
residuals[np.logical_not(np.equal(z, e))]))
for e in environments]) * n_e
def preselect_parents(X, y, n):
_, selected, _ = sklearn.linear_model.lars_path(X, y, method='lasso', max_iter=n, return_path=False)
return selected
ICP = namedtuple("ICP", ["S_hat", "q_values", "p_value"])
def invariant_causal_prediction(X, y, z, alpha=0.1):
"""
Perform Invariant Causal Prediction.
Parameters
----------
X : (n, p) ndarray
predictor variables
y : (n,) ndarray
target variable, numpy array of shape `(n)`
Z : array_like
index of environment, length(Z)==`n`
alpha : float
Confidence level of the tests and FDR to control. :math:`P(\hat{S} \subset S^*) \geq 1-\mathtt{alpha}`
Returns
-------
list
The identified causal parent set, :math:`\hat{S}`, as list of indices
"""
n = X.shape[0]
p = X.shape[1]
max_num_parents = 8
S_0 = list(range(p))
q_values = np.zeros(p)
p_value_model = 0
for S in all_parent_sets(S_0, max_num_parents):
not_S = np.ones(p, bool)
not_S[list(S)] = False
p_value = test_plausible_parent_set(X[:, S], y, z)
q_values[not_S] = np.maximum(q_values[not_S], p_value)
p_value_model = max(p_value_model, p_value)
q_values = np.minimum(q_values, 1)
S_hat = np.where(q_values <= alpha)[0]
return ICP(S_hat, q_values, p_value_model)