-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpyr.c
208 lines (192 loc) · 6.41 KB
/
pyr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/highgui/highgui_c.h>
static void print_usage(char **argv)
{
printf("Usage: %s <path> [outfile]\n", argv[0]);
exit(1);
}
static IplImage* resize(IplImage *img, CvSize sz)
{
IplImage *ret = cvCreateImage(sz, img->depth, img->nChannels);
cvResize(img, ret, CV_INTER_CUBIC);
return ret;
}
static IplImage *pyrstep(IplImage *img)
{
CvSize sz = cvGetSize(img);
sz.width = sz.width / 2 + 1;
sz.height = sz.height / 2 + 1;
IplImage *pyrd = cvCreateImage(sz, img->depth, img->nChannels);
cvPyrDown(img, pyrd, CV_GAUSSIAN_5x5);
return pyrd;
}
static IplImage* window(IplImage *img)
{
CvSize sz = cvGetSize(img);
IplImage *out = cvCreateImage(sz, img->depth, img->nChannels);
int w = sz.width, h = sz.height, x, y, i;
int stride = out->widthStep/sizeof(float);
for (y = 0; y < h; y++) {
float *d = (float*)out->imageData + (y*stride);
for (x = 0; x < w; x++) {
CvRect roi = {x - 5, y - 5, 9, 9};
cvSetImageROI(img, roi);
for (i = 0; i < out->nChannels; i++) {
CvScalar sum = cvSum(img);
*d++ = sum.val[i]/81.0;
}
}
}
cvResetImageROI(img);
return out;
}
// multi-scale contrast using a gaussian pyramid, described in [1]
// [1]: Tie Lu, et al. Learning to Detect a Salient Object:
// http://research.microsoft.com/en-us/um/people/jiansun/papers/SalientDetection_CVPR07.pdf
static IplImage* dopyr(IplImage *img)
{
int i;
CvSize sz = cvGetSize(img);
IplImage *gray = cvCreateImage(sz, img->depth, 1);
IplImage *img0 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
cvCvtColor(img, gray, CV_BGR2GRAY);
cvConvertScale(gray, img0, 1/255.0, 0);
IplImage *prev = img0, *prev_r = img0;
IplImage *out = cvCreateImage(sz, IPL_DEPTH_32F, img0->nChannels);
IplImage *sum = cvCreateImage(sz, out->depth, out->nChannels);
cvXor(sum, sum, sum, NULL);
for (i = 1; i < 6; i++) {
IplImage *level = pyrstep(prev);
IplImage *resized = resize(level, sz);
cvAbsDiff(prev_r, resized, out);
double min, max;
cvMinMaxLoc(out, &min, &max, NULL, NULL, NULL);
cvConvertScale(out, out, 1.0/(max - min), -min);
//cvMul(out, out, out, 1);
cvAcc(out, sum, NULL);
if (prev != img0) cvReleaseImage(&prev);
if (prev_r != img0) cvReleaseImage(&prev_r);
prev = level;
prev_r = resized;
}
cvConvertScale(sum, out, 1.0/i, 0);
return out;
}
static IplImage *sum_channels(IplImage *img)
{
/*CvMat hdr;
CvSize sz = {img->width, img->height};
IplImage out_hdr, *out = cvCreateImage(sz, img->depth, 3), *foo;
foo = cvReshape(img, &hdr, 3, img->width*img->height);
out = cvGetImage(&hdr, &out_hdr);
cvReduce(&out_hdr, out, 1, CV_REDUCE_SUM);
cvReshape(out, &hdr, 3, img->height);
return cvGetImage(&hdr, &out_hdr);*/
CvSize sz = cvGetSize(img);
IplImage *out = cvCreateImage(sz, img->depth, 1);
IplImage *a = cvCreateImage(sz, img->depth, 1);
IplImage *b = cvCreateImage(sz, img->depth, 1);
IplImage *c = cvCreateImage(sz, img->depth, 1);
cvXor(out, out, out, NULL);
cvSplit(img, a, b, c, NULL);
cvAcc(a, out, NULL);
cvAcc(b, out, NULL);
cvAcc(c, out, NULL);
cvReleaseImage(&a);
cvReleaseImage(&b);
cvReleaseImage(&c);
return out;
}
// saliency map from Frequency-Tuned Salient Region Detection
// http://infoscience.epfl.ch/record/135217/files/1708.pdf
static IplImage* avgdiff(IplImage *img)
{
int i;
CvSize sz = cvGetSize(img);
IplImage *sm = cvCreateImage(sz, IPL_DEPTH_32F, img->nChannels);
IplImage *out = cvCreateImage(sz, IPL_DEPTH_32F, img->nChannels);
IplImage *lab = cvCreateImage(sz, IPL_DEPTH_32F, img->nChannels);
cvConvertScale(img, out, 1/255.0, 0);
cvCvtColor(out, lab, CV_BGR2Lab);
CvScalar avg = cvAvg(lab, NULL);
for (i = 0; i < lab->nChannels; i++) avg.val[i] = -avg.val[i];
cvSmooth(lab, sm, CV_GAUSSIAN, 5, 5, 0, 0);
cvAddS(sm, avg, out, NULL);
cvMul(out, out, out, 1);
IplImage *o = sum_channels(out);
cvReleaseImage(&out);
cvReleaseImage(&lab);
cvReleaseImage(&sm);
return o;
}
static void normalize(IplImage *img)
{
double min, max;
cvMinMaxLoc(img, &min, &max, NULL, NULL, NULL);
CvScalar scalar = cvRealScalar(-min);
cvAddS(img, scalar, img, NULL);
cvConvertScale(img, img, 1.0/(max - min), 0);
}
static IplImage *binarize(IplImage *img)
{
CvSize sz = cvGetSize(img);
//CvScalar avg = cvAvg(img, NULL);
//double thresh = avg.val[0] * 2;
IplImage *i8 = cvCreateImage(sz, IPL_DEPTH_8U, img->nChannels);
IplImage *out = cvCreateImage(sz, IPL_DEPTH_32F, img->nChannels);
IplImage *seg = cvCreateImage(sz, IPL_DEPTH_8U, img->nChannels);
cvConvertScale(img, i8, 255, 0);
/*
CvSeq *comp;
CvMemStorage *storage = cvCreateMemStorage(1000);
int threshold1=255, threshold2=30, level=4;
img->width &= -(1 << level);
img->height &= -(1 << level);
IplImage *i0 = cvCloneImage(img);
IplImage *i1 = cvCloneImage(img);
cvPyrSegmentation(i0, i1, storage, &comp, level, threshold1+1, threshold2+1);
return i1;*/
CvTermCriteria cvt = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 5, 1);
cvPyrMeanShiftFiltering(img, seg, 40, 40, 4, cvt);
cvConvertScale(seg, out, 1/255.0, 0);
//cvReleaseImage(&i8);
//cvReleaseImage(&seg);
return seg;
}
static void write2file(char *fname, IplImage *img)
{
IplImage *out = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, img->nChannels);
cvConvertScale(img, out, 255, 0);
cvSaveImage(fname, out, 0);
cvReleaseImage(&out);
}
static void print_args(int argc, char **argv)
{
int i;
printf("pyr: ");
for (i = 1; i < argc; i++) printf("%s ", argv[i]);
printf("\n");
}
int main(int argc, char **argv)
{
if (argc < 2) print_usage(argv);
print_args(argc, argv);
IplImage *img = cvLoadImage(argv[1], CV_LOAD_IMAGE_COLOR);
IplImage *out = avgdiff(img);
normalize(out);
if (argc < 3) {
//IplImage *bin = binarize(img);
//normalize(bin);
//cvShowImage("segmented", bin);
cvShowImage("in", img);
cvShowImage("out", out);
cvWaitKey(0);
//cvReleaseImage(&bin);
} else write2file(argv[2], out);
cvReleaseImage(&out);
cvReleaseImage(&img);
return 0;
}