-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
110 lines (87 loc) · 3.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python3
# Imports
import numpy as np
import torch
import torch.nn as neural_net
import torch.nn.functional as func
from torch import optim
from torch.utils.data import Dataset
class ValueDataset(Dataset):
def __init__(self):
# Shadows name, blah blah
data = np.load("processed/dataset.npz")
self.X = data["arr_0"]
self.Y = data["arr_1"]
print("data loaded.", self.X.shape, self.Y.shape)
def __len__(self):
return self.X.shape[0]
def __getitem__(self, idx):
return self.X[idx], self.Y[idx]
class Net(neural_net.Module):
def __init__(self):
super(Net, self).__init__()
# Applying a 2-D convolution over an input signal composed of several input planes
# A
self.a1 = neural_net.Conv2d(5, 16, kernel_size=3, padding=1)
self.a2 = neural_net.Conv2d(16, 16, kernel_size=3, padding=1)
self.a3 = neural_net.Conv2d(16, 32, kernel_size=3, stride=2)
# B
self.b1 = neural_net.Conv2d(32, 32, kernel_size=3, padding=1)
self.b2 = neural_net.Conv2d(32, 32, kernel_size=3, padding=1)
self.b3 = neural_net.Conv2d(32, 64, kernel_size=3, stride=2)
# C
self.c1 = neural_net.Conv2d(64, 64, kernel_size=2, padding=1)
self.c2 = neural_net.Conv2d(64, 64, kernel_size=2, padding=1)
self.c3 = neural_net.Conv2d(64, 128, kernel_size=2, stride=2)
# D
self.d1 = neural_net.Conv2d(128, 128, kernel_size=1)
self.d2 = neural_net.Conv2d(128, 128, kernel_size=1)
self.d3 = neural_net.Conv2d(128, 128, kernel_size=1)
# Linear
self.last = neural_net.Linear(128, 1)
def forward(self, x) -> torch.Tensor:
"""Rectified linear unit function element-wise"""
# 4x4, 2x2, 1x128
x = func.relu(self.a1(x))
x = func.relu(self.a2(x))
x = func.relu(self.a3(x))
x = func.relu(self.b1(x))
x = func.relu(self.b2(x))
x = func.relu(self.b3(x))
x = func.relu(self.c1(x))
x = func.relu(self.c2(x))
x = func.relu(self.c3(x))
x = func.relu(self.d1(x))
x = func.relu(self.d2(x))
x = func.relu(self.d3(x))
x = x.view(-1, 128)
x = self.last(x)
# And finally, the value output
return func.tanh(x)
if __name__ == "__main__":
chess_data = ValueDataset()
train_loader = torch.utils.data.DataLoader(chess_data, batch_size=256, shuffle=True)
model = Net()
optimizer = optim.Adam(model.parameters())
# Cuda
model.cuda()
floss = neural_net.MSELoss()
model.train()
for epoch in range(100):
all_loss = 0
num_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
# Maybe break this up a bit more later on:
target = target.unsqueeze(-1)
data, target = data.to(device), target.to(device)
data = data.float()
target = target.float()
optimizer.zero_grad()
output = model(data)
loss = floss(output, target)
loss.backward()
optimizer.step()
all_loss += loss.item()
num_loss += 1
print(f"{epoch}: {all_loss / num_loss}")
torch.save(model.state_dict(), "neural_nets/chess_values.pth")