-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregressor.py
141 lines (109 loc) · 4.79 KB
/
regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#https://www.dataquest.io/blog/learning-curves-machine-learning/
import pandas as pd
import numpy as np
df = pd.read_csv("dataset.csv")
df = df.dropna() # To drop Null values
print(df.shape)
print("&&&&&&&&")
print(df.head())
'''
electricity = pd.read_excel('Folds5x2_pp.xlsx')
print(electricity.info())
electricity.head(3)
'''
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import learning_curve
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_predict
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler #For feature normalization
scaler = MinMaxScaler()
#estimator = LinearRegression()
#estimator =RandomForestRegressor()
estimator=SVR()#SVR(C=1.0, epsilon=0.2)
features = ['Efficiency','Specificity','BS_Length','Distance_exon_BS (D)','K_Median_Fold_change'] #'K_Avg_Fold_change', 'K_Median_Fold_change'
target = 'K_Avg_Fold_change'
###########################################
X = df[features]
y = df[target]
print("#############",X.shape)
print(y.shape)
#print(X.head())
#scale training data
X= scaler.fit_transform(X)
print(",,,,,,,,",X.shape)
#train, test = train_test_split(df, test_size=0.2)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
#model = LinearRegression()
model=RandomForestRegressor()
#model=SVR()#SVR(C=1.0, epsilon=0.2)
model.fit(X_train, y_train)
print(model)
expected = y_test
predicted= model.predict(X_test)
prediction_results= cross_val_predict(model,X_test,predicted)
mse = np.mean((predicted-expected)**2)
print("###",mse)
#print(model.intercept_, model.coef_, mse)
print(model.score(X_train, y_train))
####################################################
from sklearn.metrics import mean_squared_error
from sklearn import metrics
from math import sqrt
rmse = sqrt(mean_squared_error(y_test,predicted))
print("$$$",mse)
print("The linear regression score is {}".format(model.score(X_train,y_train)))
print("The linear regression score is {}".format(model.score(X_test,y_test)))
print("The RMSE is {}".format(rmse))
#print("The RMSE of the training set is {}".format(np.sqrt(metrics.mean_squared_error(y_train,X_train))))
#print("The MAE is {}".format(metrics.mean_absolute_error(y_test,predicted)))
print("The MSE is {}".format(metrics.mean_squared_error(y_test,predicted)))
#######################################################
#Plot learning curve
train_sizes = [1, 500, 2500, 10000, 25000, 34204]
train_sizes, train_scores, validation_scores = learning_curve(
estimator = estimator,
X = df[features],
y = df[target], train_sizes = train_sizes, cv = 5,
scoring = 'neg_mean_squared_error')
print('Training scores:\n\n', train_scores)
print('\n', '-' * 70) # separator to make the output easy to read
print('\nValidation scores:\n\n', validation_scores)
train_scores_mean = -train_scores.mean(axis = 1)
validation_scores_mean = -validation_scores.mean(axis = 1)
print('Mean training scores\n\n', pd.Series(train_scores_mean, index = train_sizes))
print('\n', '-' * 20) # separator
print('\nMean validation scores\n\n',pd.Series(validation_scores_mean, index = train_sizes))
plt.style.use('seaborn')
plt.plot(train_sizes, train_scores_mean, label = 'Training error')
plt.plot(train_sizes, validation_scores_mean, label = 'Validation error')
plt.ylabel('MSE', fontsize = 14)
plt.xlabel('Training set size', fontsize = 14)
#plt.title('Learning curves for Linear regression model', fontsize = 18, y = 1.03)
plt.title('Learning curves for Random forest regression model', fontsize = 18, y = 1.03)
#plt.title('Learning curves for Support vector regression model', fontsize = 18, y = 1.03)
plt.legend()
#plt.ylim(0,40)
########################
'''
def learning_curves(estimator, data, features, target, train_sizes, cv):
train_sizes, train_scores, validation_scores = learning_curve(
estimator, data[features], data[target], train_sizes =
train_sizes, cv = cv,scoring ='neg_mean_squared_error')
train_scores_mean = -train_scores.mean(axis = 1)
validation_scores_mean = -validation_scores.mean(axis = 1)
plt.plot(train_sizes, train_scores_mean, label = 'Training error')
plt.plot(train_sizes, validation_scores_mean, label = 'Validation error')
plt.ylabel('MSE', fontsize = 14)
plt.xlabel('Training set size', fontsize = 14)
title = 'Learning curves for a ' + str(estimator).split('(')[0] + ' model'
plt.title(title, fontsize = 18, y = 1.03)
plt.legend()
plt.ylim(0,40)
### Plotting the two learning curves ###
'''
plt.show()