-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprivacy_attacks.py
577 lines (464 loc) · 25.9 KB
/
privacy_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import os
import sys
import inspect
import numpy as np
import pandas as pd
import argparse
from sklearn.metrics import roc_curve, auc
import sklearn.metrics as metrics
from sklearn.datasets import fetch_openml
from sklearn.impute import SimpleImputer
from sklearn import preprocessing
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Subset
from torch.nn import functional as F
from models import build_model
from utils.misc import bool_flag
from utils.masks import evaluate_masks, merge_mask
from MIA_classifier import get_label
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
def get_parser():
"""
Generate a parameters parser.
"""
parser = argparse.ArgumentParser(description='Privacy attack parameters')
# Attack parameters
parser.add_argument("--architecture", choices=["smallnet", "linear", "wrn28_10", "densenet121", "mlp", "vgg16"],default="smallnet")
parser.add_argument("--private_architecture",choices=["smallnet", "linear", "wrn28_10", "densenet121", "mlp", "vgg16"], default="smallnet")
parser.add_argument("--attack_architecture",choices=["smallnet", "linear", "wrn28_10", "densenet121", "mlp", "vgg16"], default="smallnet")
parser.add_argument("--dump_path", type=str, default=None) # reference model path
parser.add_argument("--model_path", type=str, default="model") # private model path
parser.add_argument("--classifier_path", type=str, default="mia_model") # mia classifier path
parser.add_argument('--classifier_num_dimensions', type=int, default=3) # number of features for mia classifier
parser.add_argument("--threshold_low", type=float, default=-10000) # select the evaluation threshold
parser.add_argument("--threshold_high", type=float, default=10000) # select the evaluation threshold
parser.add_argument("--accurate", type=int, default=10000) # select the precision of evaluation threshold
parser.add_argument("--cos_threshold", type=float, default=0) # select the cosine similarity threshold
# data parameters
parser.add_argument("--data_root", type=str, default="data") # path to the data
parser.add_argument("--dataset", type=str,choices=["cifar10", "cifar100", "credit", "adult", "cinic10"], default="cifar10")
parser.add_argument("--mask_path", type=str, required=True) # path to the data mask
parser.add_argument('--data_num_dimensions', type=int, default=3) # number of features for data
parser.add_argument("--num_classes", type=int, default=10) # number of classes for classification task
parser.add_argument("--in_channels", type=int, default=3) # number of input channels for image data
# training parameters
parser.add_argument("--aug", type=bool_flag, default=False) # data augmentation flag
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--optimizer", default="sgd,lr=0.001,momentum=0.9")
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--log_gradients", type=bool_flag, default=False)
parser.add_argument("--log_batch_models", type=bool_flag, default=False) # save model for each batch of data
parser.add_argument("--log_epoch_models", type=bool_flag, default=False) # save model for each training epoch
parser.add_argument('--print_freq', type=int, default=50) # training printing frequency
parser.add_argument("--save_periodic", type=int, default=0) # training saving frequency
# privacy parameters
parser.add_argument("--private", type=bool_flag, default=False) # privacy flag
parser.add_argument("--noise_multiplier", type=float, default=None)
parser.add_argument("--privacy_epsilon", type=float, default=None)
parser.add_argument("--privacy_delta", type=float, default=None)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
return parser
def adult_data_transform(df):
binary_data = pd.get_dummies(df)
feature_cols = binary_data[binary_data.columns[:-2]]
scaler = preprocessing.StandardScaler()
data = pd.DataFrame(scaler.fit_transform(feature_cols), columns=feature_cols.columns)
return data
def get_dataset(params):
if params.dataset == 'cifar10':
if params.aug == True:
augmentations = [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]
normalize = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
model_transform = transforms.Compose(augmentations + normalize)
else:
normalize = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
model_transform = transforms.Compose(normalize)
return torchvision.datasets.CIFAR10(root=params.data_root, train=True, download=True, transform=model_transform)
elif params.dataset == 'cifar100':
if params.aug:
augmentations = [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]
normalize = [transforms.ToTensor(), transforms.Normalize(mean=[n / 255 for n in [129.3, 124.1, 112.4]],std=[n / 255 for n in [68.2, 65.4, 70.4]])]
transform = transforms.Compose(augmentations + normalize)
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Resize((224, 224)), transforms.Normalize(mean=[n / 255 for n in [129.3, 124.1, 112.4]], std=[n / 255 for n in [68.2, 65.4, 70.4]])])
dataset = torchvision.datasets.CIFAR100(root=params.data_root, train=True, download=True, transform=transform)
return dataset
elif params.dataset == 'cinic10':
if params.aug == True:
augmentations = [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]
normalize = [transforms.ToTensor(), transforms.Normalize(mean=[0.47889522, 0.47227842, 0.43047404],std=[0.24205776, 0.23828046, 0.25874835])]
transform = transforms.Compose(augmentations + normalize)
else:
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.47889522, 0.47227842, 0.43047404],std=[0.24205776, 0.23828046, 0.25874835])])
dataset = torchvision.datasets.ImageFolder(root=params.data_root + '/train', transform=transform)
return dataset
elif params.dataset == 'credit':
cred = fetch_openml('credit-g', version='1', as_frame=False, parser='liac-arff')
data = SimpleImputer(missing_values=np.nan, strategy='mean', copy=True).fit(cred.data).transform(cred.data)
target = preprocessing.LabelEncoder().fit(cred.target).transform(cred.target)
X = data
norm = np.max(np.concatenate((-1 * X.min(axis=0)[np.newaxis], X.max(axis=0)[np.newaxis]), axis=0).T,axis=1).astype('float32')
data = np.divide(data, norm)
data = torch.tensor(data).float()
target = torch.tensor(target).long()
ids = np.arange(1000)[:800]
final_data = []
for i in ids:
final_data.append([data[i], target[i]])
params.num_classes = 2
return final_data
elif params.dataset == 'adult':
columns = ["age", "workClass", "fnlwgt", "education", "education-num", "marital-status", "occupation",
"relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country",
"income"]
train_data = pd.read_csv(params.data_root + '/adult.data', names=columns, sep=' *, *', na_values='?',engine='python')
test_data = pd.read_csv(params.data_root + '/adult.test', names=columns, sep=' *, *', skiprows=1, na_values='?',engine='python')
original_train = train_data
original_test = test_data
num_train = len(original_train)
original = pd.concat([original_train, original_test])
labels = original['income']
labels = labels.replace('<=50K', 0).replace('>50K', 1)
labels = labels.replace('<=50K.', 0).replace('>50K.', 1)
# Remove target
del original["income"]
data = adult_data_transform(original)
train_data = data[:num_train]
train_labels = labels[:num_train]
test_data = data[num_train:]
test_labels = labels[num_train:]
test_data = torch.tensor(test_data.to_numpy()).float()
train_data = torch.tensor(train_data.to_numpy()).float()
test_labels = torch.tensor(test_labels.to_numpy(dtype='int64')).long()
train_labels = torch.tensor(train_labels.to_numpy(dtype='int64')).long()
final_data = []
for i in np.arange(len(train_data)):
final_data.append([train_data[i], train_labels[i]])
return final_data
# Get the membership score feature of LDC-MIA
def get_losses(params, mask_in, mask_out):
params.architecture = params.private_architecture
# get the final model parameters
private_model = build_model(params)
private_model_path = os.path.join(params.model_path, "checkpoint.pth")
state_dict_private = torch.load(private_model_path, map_location='cuda:0')
private_model.load_state_dict(state_dict_private['model'])
private_model = private_model.cuda()
private_model.eval()
# get the appropriate ids to dot product
private_train_ids = (mask_in == True).nonzero().flatten().numpy()
private_heldout_ids = (mask_out == True).nonzero().flatten().numpy()
# load the dataset
dataset = get_dataset(params)
train_dataset = torch.utils.data.Subset(dataset, private_train_ids)
heldout_dataset = torch.utils.data.Subset(dataset, private_heldout_ids)
# Create DataLoaders for batching
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=False, pin_memory=True)
heldout_loader = DataLoader(heldout_dataset, batch_size=64, shuffle=False, pin_memory=True)
# Now perform the inference
train_losses = inference(private_model, train_loader)
heldout_losses = inference(private_model, heldout_loader)
return train_losses, heldout_losses
# Get the calibrated membership score
def get_calibrated_losses(params, private_model, attack_model, ids):
# load the dataset
dataset = get_dataset(params)
sub_dataset = Subset(dataset, ids)
data_loader = DataLoader(sub_dataset, batch_size=64, shuffle=False, pin_memory=True)
private_model.eval() # Set the models to evaluation mode
attack_model.eval()
all_losses = []
with torch.no_grad(): # No need to compute gradients
for images, targets in data_loader:
images = images.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
# Get the losses from both models
output = private_model(images)
private_loss = -F.cross_entropy(output, targets, reduction='none')
attack_output = attack_model(images)
attack_loss = -F.cross_entropy(attack_output, targets, reduction='none')
# Calculate the calibrated loss for each item in the batch
calibrated_losses = private_loss - attack_loss
all_losses.extend(calibrated_losses.tolist()) # Convert to list and store
return torch.tensor(all_losses)
# Get the calibrated membership score of LDC-MIA
def calibrated_loss_attack(params, mask_in, mask_out):
# load the masks
known_masks, hidden_masks = {}, {}
hidden_masks['public'], hidden_masks['private'], hidden_masks['shadow1'] = {}, {}, {}
known_masks['public'] = torch.load(params.mask_path + params.dataset + "public.pth")
known_masks['private'] = torch.load(params.mask_path + params.dataset + "private.pth")
hidden_masks['private']['train'] = torch.load(params.mask_path + "hidden/" + params.dataset + "train.pth")
hidden_masks['private']['heldout'] = torch.load(params.mask_path + "hidden/" + params.dataset + "heldout.pth")
hidden_masks['public']['train'] = torch.load(params.mask_path + "hidden/" + params.dataset + "public_train.pth")
hidden_masks['shadow1']['train'] = torch.load(params.mask_path + "hidden/" + params.dataset + "shadow1_train.pth")
hidden_masks['shadow1']['heldout'] = torch.load(params.mask_path + "hidden/" + params.dataset + "shadow1_heldout.pth")
# get the reference model parameters
params.architecture = params.attack_architecture
attack_model = build_model(params)
attack_model_path = os.path.join(params.dump_path, "checkpoint.pth")
state_dict_attack = torch.load(attack_model_path)
attack_model.load_state_dict(state_dict_attack['model'])
attack_model = attack_model.cuda()
# get the private model parameters
params.architecture = params.private_architecture
private_model = build_model(params)
private_model_path = os.path.join(params.model_path, "checkpoint.pth")
state_dict_private = torch.load(private_model_path)
private_model.load_state_dict(state_dict_private['model'])
private_model = private_model.cuda()
# get the appropriate ids to dot product
private_train_ids = (mask_in == True).nonzero().flatten().numpy()
private_heldout_ids = (mask_out == True).nonzero().flatten().numpy()
private_model.eval()
attack_model.eval()
train_losses = get_calibrated_losses(params, private_model, attack_model, private_train_ids)
heldout_losses = get_calibrated_losses(params, private_model, attack_model, private_heldout_ids)
return train_losses, heldout_losses
# Get the logit vector for calculating neighborhood information
def get_neighbor(params, mask_in, mask_out, mask_reference):
# get the reference model parameters
params.architecture = params.attack_architecture
private_model = build_model(params)
private_model_path = os.path.join(params.dump_path, "checkpoint.pth")
state_dict_private = torch.load(private_model_path)
private_model.load_state_dict(state_dict_private['model'])
private_model = private_model.cuda()
private_model.eval()
# get the appropriate ids to dot product
private_train_ids = (mask_in == True).nonzero().flatten().numpy()
private_heldout_ids = (mask_out == True).nonzero().flatten().numpy()
private_reference_ids = (mask_reference == True).nonzero().flatten().numpy()
# load the dataset
dataset = get_dataset(params)
batch_size = 64
# Create DataLoader for each set of IDs
train_loader = DataLoader(Subset(dataset, private_train_ids), batch_size=batch_size, shuffle=False,pin_memory=True)
heldout_loader = DataLoader(Subset(dataset, private_heldout_ids), batch_size=batch_size, shuffle=False,pin_memory=True)
reference_loader = DataLoader(Subset(dataset, private_reference_ids), batch_size=batch_size, shuffle=False,pin_memory=True)
# Collect outputs for each dataset
train_neighbor = collect_outputs(private_model, train_loader)
heldout_neighbor = collect_outputs(private_model, heldout_loader)
reference_neighbor = collect_outputs(private_model, reference_loader)
return train_neighbor, heldout_neighbor, reference_neighbor
# Get the neighborhood information of LDC-MIA
def neighbor_cos_similarity(params, train_neighbor, heldout_neighbor, reference_neighbor):
train_neighbor = torch.stack(train_neighbor)
heldout_neighbor = torch.stack(heldout_neighbor)
reference_neighbor = torch.stack(reference_neighbor)
cos_tensor = torch.cat((train_neighbor, heldout_neighbor, reference_neighbor))
# Calculate the cosine similarity matrix
cos_tensor = cos_tensor.cuda()
cos_tensor = cos_tensor / torch.norm(cos_tensor, dim=-1, keepdim=True)
similarity = torch.mm(cos_tensor, cos_tensor.T)
# Calculate the number of neighbors
similarity = similarity[:, len(train_neighbor) + len(heldout_neighbor):]
train_neighbor_result = [] # Store number of each member's neighbors whose cos similarity are higher than the threshold
heldout_neighbor_result = [] # Store number of each non-member's neighbors whose cos similarity are higher than the threshold
for i in range(0, len(train_neighbor)):
neighbor = (similarity[i] >= params.cos_threshold).float()
sum = torch.sum(neighbor) / len(reference_neighbor)
train_neighbor_result.append(sum)
for i in range(len(train_neighbor), len(train_neighbor) + len(heldout_neighbor)):
neighbor = (similarity[i] >= params.cos_threshold).float()
sum = torch.sum(neighbor) / len(reference_neighbor)
heldout_neighbor_result.append(sum)
train_neighbor_result = torch.tensor(train_neighbor_result)
heldout_neighbor_result = torch.tensor(heldout_neighbor_result)
return train_neighbor_result, heldout_neighbor_result
# For each target sample(x_target, y_target),
# before inference the target sample on mia classifier,
# integrate all the features [label, enhanced calibrated membership score, membership score] for each target sample
def generate_classifier_test_data(params, cal_loss, loss, mask):
"""
get the input for MIA_classifier
generate [label, calibrated membership score, membership score]
"""
finaldata = []
label = get_label(params=params, mask=mask)
label = one_hot(label, params)
for i in range(0, len(label)):
sample = []
for data in label[i]:
sample.append(data)
sample.append(cal_loss[i])
sample.append(loss[i])
sample = torch.tensor(sample).float()
finaldata.append(sample)
return finaldata
# Get the probability that whether the target sample(x_target, y_target) is member(training data of target model)
def get_classifier_confidence(params, model_path, dataset):
device = torch.device('cpu')
# get the final model parameters
params.architecture = "linear"
params.num_classes = 2
params.data_num_dimensions = params.classifier_num_dimensions
private_model = build_model(params)
private_model_path = os.path.join(model_path, "checkpoint.pth")
state_dict_private = torch.load(private_model_path, map_location=device)
private_model.load_state_dict(state_dict_private['model'])
private_model = private_model.cpu()
train_images = torch.stack([data for data in dataset])
train_images = train_images.cpu()
softmax = torch.nn.Softmax(dim=1)
train_output = private_model(train_images)
train_output = softmax(train_output)
confidence = []
for i in train_output:
if torch.argmax(i, dim=0) == 0:
confidence.append(-i[0])
else:
confidence.append(i[1])
final_confidence = torch.Tensor(confidence)
return final_confidence
def inference(private_model, loader):
losses = []
private_model.eval()
with torch.no_grad():
for images, targets in loader:
images = images.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
output = private_model(images)
loss = -F.cross_entropy(output, targets, reduction='none')
losses.extend(loss.tolist())
return torch.tensor(losses)
def collect_outputs(model, loader):
model.eval()
outputs = []
with torch.no_grad():
for images in loader:
images = images[0].cuda(non_blocking=True)
model_output = model(images)
outputs.extend(model_output.detach().cpu())
return outputs
def one_hot(x, params):
return torch.eye(params.num_classes)[x, :]
# Get MIA result(FPR, TPR, ACCURACY, AUC, PRECISION, RECALL)
def get_result(train_vals, heldout_vals, params):
tpr_list = []
fpr_list = []
precision_list = []
recall_list = []
acc = 0
for threshold_test in range(params.threshold_low, params.threshold_high + 1, 1):
threshold_test = threshold_test / params.accurate
tpr, fpr, precision, recall, accuracy = evaluate_masks(train_vals, heldout_vals, threshold=threshold_test)
tpr = tpr.cpu().data.numpy()
fpr = fpr.cpu().data.numpy()
precision = precision.cpu().data.numpy()
recall = recall.cpu().data.numpy()
tpr_list.append(tpr)
fpr_list.append(fpr)
precision_list.append(precision)
recall_list.append(recall)
if accuracy >= acc:
acc = accuracy
get_auc = auc(fpr_list, tpr_list)
return fpr_list, tpr_list, acc, get_auc, precision_list, recall_list
if __name__ == '__main__':
parser = get_parser()
params = parser.parse_args()
# load the masks
known_masks, hidden_masks = {}, {}
hidden_masks['public'], hidden_masks['private'], hidden_masks['shadow'] = {}, {}, {}
known_masks['public'] = torch.load(params.mask_path + params.dataset + "public.pth")
known_masks['private'] = torch.load(params.mask_path + params.dataset + "private.pth")
hidden_masks['private']['train'] = torch.load(params.mask_path + "hidden/" + params.dataset + "train.pth")
hidden_masks['private']['heldout'] = torch.load(params.mask_path + "hidden/" + params.dataset + "heldout.pth")
hidden_masks['public']['train'] = torch.load(params.mask_path + "hidden/" + params.dataset + "public_train.pth")
hidden_masks['shadow']['train'] = torch.load(params.mask_path + "hidden/" + params.dataset + "shadow1_train.pth")
hidden_masks['shadow']['heldout'] = torch.load(params.mask_path + "hidden/" + params.dataset + "shadow1_heldout.pth")
# get the membership score for LDC-MIA
print("####### Getting the Membership score...")
train_loss, heldout_loss = get_losses(params, hidden_masks['private']['train'],hidden_masks['private']['heldout'])
# LDC-MIA
print("####### Getting the original Calibrated Membership score...")
train_cals, heldout_cals = calibrated_loss_attack(params, hidden_masks['private']['train'],hidden_masks['private']['heldout'])
with torch.no_grad():
# ref_mask = hidden_masks['shadow']['train']
ref_mask = merge_mask(hidden_masks['shadow']['heldout'], hidden_masks['shadow']['train'])
print("####### Getting the neighborhood vector...")
private_in_neighbor, private_out_neighbor, reference_neighbor = get_neighbor(params,hidden_masks['private']['train'],hidden_masks['private']['heldout'], ref_mask)
print("####### Calculating the neighborhood information...")
train_cos, heldout_cos = neighbor_cos_similarity(params, private_in_neighbor, private_out_neighbor,reference_neighbor)
# calculate the enhanced calibrated membership score
print("####### Calculating the Enhanced Calibrated membership score...")
train_cals = torch.div(train_cals, train_cos)
heldout_cals = torch.div(heldout_cals, heldout_cos)
# get the data of target model that integrating with three features needed by LDC-MIA for mia classifier
print("####### Assembling the attack information of target sample...")
in_data = generate_classifier_test_data(params, train_cals, train_loss, hidden_masks['private']['train'])
out_data = generate_classifier_test_data(params, heldout_cals, heldout_loss, hidden_masks['private']['heldout'])
# get the results of LOSS ATTACK
params.threshold_high = int(torch.max(train_loss).item() * 100) + 1
params.threshold_low = int(torch.min(heldout_loss).item() * 100) - 1
params.accurate = 100
_, _, acc_ls, is_auc_ls, _, _ = get_result(train_loss, heldout_loss, params)
# calculate TPR@FPR
score = torch.cat((train_loss, heldout_loss), -1)
zeros_array = np.zeros(len(train_loss), dtype=int)
ones_array = np.ones(len(heldout_loss), dtype=int)
y = np.concatenate((zeros_array, ones_array))
fpr_ls, tpr_ls, _ = metrics.roc_curve(y, score, pos_label=0)
fpr_ls = np.array(fpr_ls)
low_ls_001 = tpr_ls[np.where(fpr_ls <= 0.0001)[0][-1]]
low_ls_01 = tpr_ls[np.where(fpr_ls <= 0.001)[0][-1]]
low_ls_1 = tpr_ls[np.where(fpr_ls <= 0.01)[0][-1]]
# get the results of LDC-MIA
print("####### Inferencing the target samples on MIA classifier...")
in_prob = get_classifier_confidence(params, params.classifier_path, in_data)
out_prob = get_classifier_confidence(params, params.classifier_path, out_data)
params.threshold_high = int(torch.max(in_prob).item() * 10000) + 1
params.threshold_low = int(torch.min(out_prob).item() * 10000) - 1
params.accurate = 10000
_, _, acc, is_auc, _, _ = get_result(in_prob, out_prob, params)
# calculate TPR@FPR
score = torch.cat((in_prob, out_prob), -1)
zeros_array = np.zeros(len(in_prob), dtype=int)
ones_array = np.ones(len(out_prob), dtype=int)
y = np.concatenate((zeros_array, ones_array))
fpr_new, tpr_new, _ = metrics.roc_curve(y, score, pos_label=0)
fpr_new = np.array(fpr_new)
low_001 = tpr_new[np.where(fpr_new <= 0.0001)[0][-1]]
low_01 = tpr_new[np.where(fpr_new <= 0.001)[0][-1]]
low_1 = tpr_new[np.where(fpr_new <= 0.01)[0][-1]]
# plot the ROC curve
print("####### Saving the ROC curve 'ROC.png'...")
plt.semilogx()
plt.semilogy()
plt.xlim(1e-4, 1)
plt.ylim(1e-4, 1)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot([0, 1], [0, 1], ls='--', color='gray', label='Random guess')
plt.plot(fpr_new, tpr_new, color='m', label='LDC-MIA')
plt.plot(fpr_ls, tpr_ls, color='green', label='Loss Attack')
plt.legend(loc='best')
plt.savefig("ROC", bbox_inches='tight')
plt.clf()
# plot the Precision-Recall curve
print("####### Saving the Precision-Recall curve 'PR.png'...")
precision_new = tpr_new / (tpr_new + fpr_new)
recall_new = tpr_new
precision_ls = tpr_ls / (tpr_ls + fpr_ls)
recall_ls = tpr_ls
plt.xlim(0, 1)
plt.ylim(0.5, 1)
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.plot(recall_new, precision_new, color='m', label='LDC-MIA')
plt.plot(recall_ls, precision_ls, color='green', label='Loss Attack')
plt.legend(loc='best')
plt.savefig("PR", bbox_inches='tight')
print("LDC-MIA TPR @1%FPR: {}, TPR @0.1%FPR: {}, TPR @0.01%FPR: {} | LOSS ATTACK TPR @1%FPR: {}, TPR @0.1%FPR: {}, TPR @0.01%FPR: {}".format(
low_1, low_01, low_001, low_ls_1, low_ls_01, low_ls_001
))
print("LDC-MIA accuracy: {} | LOSS ATTACK accuracy: {}".format(acc, acc_ls))
print("LDC-MIA AUC: {} | LOSS ATTACK AUC: {}".format(is_auc, is_auc_ls))