NOTE: You can use the main branch of the YOLOX repo to convert all model versions.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yolox file
- Edit the deepstream_app_config file
- Testing the model
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -r requirements.txt
python3 setup.py develop
pip3 install onnx onnxsim onnxruntime
NOTE: It is recommended to use Python virtualenv.
Copy the export_yolox.py
file from DeepStream-Yolo/utils
directory to the YOLOX
folder.
Download the pth
file from YOLOX releases (example for YOLOX-s)
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
NOTE: You can use your custom model.
Generate the ONNX model file (example for YOLOX-s)
python3 export_yolox.py -w yolox_s.pth -c exps/default/yolox_s.py --simplify
Copy the generated ONNX model file to the DeepStream-Yolo
folder.
Open the DeepStream-Yolo
folder and compile the lib
-
DeepStream 6.2 on x86 platform
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yolox.txt
file according to your model (example for YOLOX-s with 80 classes)
[property]
...
onnx-file=yolox_s.onnx
model-engine-file=yolox_s.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
NOTE: If you use the legacy model, you should edit the config_infer_primary_yolox_legacy.txt
file.
NOTE: The YOLOX and YOLOX legacy resize the input with left/top padding. To get better accuracy, use
maintain-aspect-ratio=1
symmetric-padding=0
NOTE: The YOLOX uses no normalization on the image preprocess. It is important to change the net-scale-factor
according to the trained values.
net-scale-factor=1
NOTE: The YOLOX legacy uses normalization on the image preprocess. It is important to change the net-scale-factor
and offsets
according to the trained values.
Default: mean = 0.485, 0.456, 0.406
and std = 0.229, 0.224, 0.225
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
...
[primary-gie]
...
config-file=config_infer_primary_yolox.txt
NOTE: If you use the legacy model, you should edit it to config_infer_primary_yolox_legacy.txt
.
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: For more information about custom models configuration (batch-size
, network-mode
, etc), please check the docs/customModels.md
file.