NOTE: You can use the release/2.6 branch of the PPYOLOE repo to convert all model versions.
- Convert model
- Compile the lib
- Edit the config_infer_primary_ppyoloe_plus file
- Edit the deepstream_app_config file
- Testing the model
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/docs/tutorials/INSTALL.md
NOTE: It is recommended to use Python virtualenv.
Copy the export_ppyoloe.py
file from DeepStream-Yolo/utils
directory to the PaddleDetection
folder.
Download the pdparams
file from PP-YOLOE releases (example for PP-YOLOE+_s)
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
NOTE: You can use your custom model.
Generate the ONNX model file (example for PP-YOLOE+_s)
pip3 install onnx onnxsim onnxruntime
python3 export_ppyoloe.py -w ppyoloe_plus_crn_s_80e_coco.pdparams -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml --simplify
Copy the generated ONNX model file to the DeepStream-Yolo
folder.
Open the DeepStream-Yolo
folder and compile the lib
-
DeepStream 6.2 on x86 platform
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_ppyoloe_plus.txt
file according to your model (example for PP-YOLOE+_s with 80 classes)
[property]
...
onnx-file=ppyoloe_plus_crn_s_80e_coco.onnx
model-engine-file=ppyoloe_plus_crn_s_80e_coco.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYoloE
...
NOTE: If you use the legacy model, you should edit the config_infer_primary_ppyoloe.txt
file.
NOTE: The PP-YOLOE+ and PP-YOLOE legacy do not resize the input with padding. To get better accuracy, use
maintain-aspect-ratio=0
NOTE: The PP-YOLOE+ uses zero mean normalization on the image preprocess. It is important to change the net-scale-factor
according to the trained values.
net-scale-factor=0.0039215697906911373
NOTE: The PP-YOLOE legacy uses normalization on the image preprocess. It is important to change the net-scale-factor
and offsets
according to the trained values.
Default: mean = 0.485, 0.456, 0.406
and std = 0.229, 0.224, 0.225
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
...
[primary-gie]
...
config-file=config_infer_primary_ppyoloe_plus.txt
NOTE: If you use the legacy model, you should edit it to config_infer_primary_ppyoloe.txt
.
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: For more information about custom models configuration (batch-size
, network-mode
, etc), please check the docs/customModels.md
file.