-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathserver.R
48 lines (42 loc) · 1.38 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
## File: server.R
## Desc: This is the server script of my Coursera class project shiny app
## Copyright: (c) 2014, Jason D. Miller
# Libraries
require(data.table)
require(randomForest)
require(ROCR)
require(shiny)
require(shinyapps)
require(stringr)
# Run shinyServer function
shinyServer(function(input, output) {
x <- readRDS("x.rds")
rf <- readRDS("rf.rds")
glm <- readRDS("fit.rds")
perf <- readRDS("perf.rds")
ol <- readRDS("ordered_logit.rds")
train <- readRDS("training.rds")
userdf <- x[1,]
output$viz <- renderPlot({plot(perf,col='red',lwd=3)
abline(a=0,b=1,lwd=2,lty=2,col="gray")
})
# Reactively update the prediction dataset!
values <- reactiveValues()
values$df <- userdf
newEntry <- observe({
values$df$bron_badges <- input$bron_badges
values$df$silv_badges <- input$silv_badges
values$df$gold_badges <- input$gold_badges
values$df$reputation <- input$reputation
values$df$views <- input$views
values$df$votes <- input$votes
})
output$table <- renderTable({data.frame(values$df)})
output$results <- renderPrint({
{ ds1 <- values$df
a <- predict(ol, newdata = data.frame(ds1))
names(a) <- NULL
cat(a)
}
})
})