-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
96 lines (79 loc) · 3.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import numpy as np
from tqdm.notebook import tqdm
from argparse import ArgumentParser
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import albumentations # augmentations library
import timm # image model library
import torch #import torch
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import flash
from flash.vision import ImageClassificationData
from flash.vision import ImageClassifier
from flash import Trainer
from torch.nn import functional as F
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
import pytorch_lightning as pl
# import our libraries
from flash import download_data
def load_data(path, batch_size=32, num_workers=4):
train_path = os.path.join(path, 'train')
val_path = os.path.join(path, 'val')
test_path = os.path.join(path, 'test')
# 2. Load the data
datamodule = ImageClassificationData.from_folders(
train_folder=train_path,
valid_folder=val_path,
test_folder=test_path,
num_workers=num_workers,
batch_size=batch_size,
)
return datamodule
def train_cli(args):
pl.seed_everything(args.seed)
data = load_data(args.data_dir, args.batch_size, args.num_workers)
print('train samples:', len(data.train_dataloader().dataset))
print('valid samples:', len(data.val_dataloader().dataset))
if args.backbone == "resnet200d":
model_name = 'resnet200d'#'resnet200d'
model = timm.create_model(model_name, pretrained=True)
num_features = model.num_features
model.global_pool = torch.nn.Identity()
model.fc = torch.nn.Identity()
pooling = torch.nn.AdaptiveAvgPool2d(1)
backbone = (model, model.num_features)
elif args.backbone =="ViT":
model = timm.create_model('vit_base_patch16_224', pretrained=True)
for param in model.parameters():
param.requires_grad = False
backbone = (model, model.num_features)
else:
backbone = args.backbone
## Create Flash Classifier
model = ImageClassifier(backbone=backbone,
num_classes=data.num_classes,
optimizer = torch.optim.Adam,
learning_rate=args.learning_rate
)
## Fine Tune
trainer = Trainer(
gpus=args.gpus,
max_epochs=args.max_epochs
)
trainer.finetune(model, data, strategy='no_freeze')
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--valid_split', type=float, default=.1)
parser.add_argument('--backbone', type=str, default="resnet18")
parser.add_argument('--data_dir', type=str, default=os.getcwd())
parser.add_argument('--max_epochs', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--image_size', type=int, default=512)
parser.add_argument('--gpus', type=int, default=None)
args = parser.parse_args()
train_cli(args)