-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·48 lines (30 loc) · 1.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""A script to train and test classifier"""
import numpy as np
from classifier.classifier import SVM
from create_dataset import createDataset
import os
from create_dataset import Landmark_Extract
def main(train_pickle,test_pickle):
if os.path.exists(train_pickle) and os.path.exists(test_pickle):
(X_train, y_train)= Landmark_Extract.load_data(
"datasets/train.pkl",test_split=0.2,seed=40)
(X_test, y_test) = Landmark_Extract.load_test_data(
"datasets/test.pkl", test_split=0.2, seed=40)
else:
X_train, y_train, X_test, y_test=createDataset.create_dataset()
X_train =np.asarray(X_train)
y_train = np.asarray(y_train)
X_test = np.asarray(X_test)
y_test = np.asarray(y_test)
labels = np.unique(np.hstack((y_train)))
num_features = len(X_train[0])
num_classes = len(labels)
Svm = SVM(labels,num_classes)
Svm.fit(X_train,y_train)
Svm.evaluate(X_test,y_test)
if __name__ == '__main__':
train_pickle = "/home/palnak/PycharmProjects/ExpRec/datasets/train.pkl"
test_pickle = "/home/palnak/PycharmProjects/ExpRec/datasets/test.pkl"
main(train_pickle,test_pickle)