-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathspeech_features.py
67 lines (50 loc) · 2.26 KB
/
speech_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""Run preprocessing on the stimuli."""
import glob
import json
import logging
import os
import numpy as np
from task1_match_mismatch.util.envelope import calculate_envelope
from task1_match_mismatch.util.mel_spectrogram import calculate_mel_spectrogram
if __name__ == "__main__":
# Whether to overwrite already existing features
overwrite = False
# Get the path to the config file
task_folder = os.path.dirname(os.path.dirname(__file__))
config_path = os.path.join(task_folder, 'util', 'config.json')
# Load the config
with open(config_path) as fp:
config = json.load(fp)
# Run the extraction
logging.info(f'Extracting speech features')
# Get the downloaded data directory
dataset_folder = config["dataset_folder"]
source_stimuli_folder = os.path.join(dataset_folder, config["raw_stimuli_folder"])
# Get the path to save the preprocessed files
output_stimuli_folder = os.path.join(dataset_folder, config["preprocessed_stimuli_folder"])
# Create the save directory if it didn't exist already
os.makedirs(output_stimuli_folder, exist_ok=True)
# Find the stimuli files
speech_files = glob.glob(os.path.join(source_stimuli_folder, "*.npz"))
# Preprocess the stimuli
nb_speech_files = len(speech_files)
logging.info("Found %u stimuli files", nb_speech_files)
for index, filepath in enumerate(speech_files):
# Loop over each speech file and create envelope and mel spectrogram
# and save them
filename = os.path.basename(filepath)
print(f"Preprocessing {filepath} ({index + 1}/{nb_speech_files})")
# Envelope
env_path = os.path.join(output_stimuli_folder, filename.replace(".npz", "_envelope.npy"))
if not os.path.exists(env_path) or overwrite:
envelope = calculate_envelope(filepath)
np.save(env_path, envelope)
else:
print(f"Skipping {env_path} because it already exists")
# Mel
mel_path = os.path.join(output_stimuli_folder, filename.replace(".npz", "_mel.npy"))
if not os.path.exists(mel_path) or overwrite:
mel = calculate_mel_spectrogram(filepath)
np.save(mel_path, mel)
else:
print(f"Skipping {mel_path} because it already exists")