forked from Om-Alve/smolGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
230 lines (189 loc) · 8.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import inspect
from typing import Optional, Tuple
from dataclasses import dataclass
from config import GPTConfig
class CausalSelfAttention(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
self.config = config
self.c_attn = nn.Linear(config.n_embed, 3 * config.n_embed, bias=config.bias)
self.c_proj = nn.Linear(config.n_embed, config.n_embed, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")
if not self.flash:
print("Not using flash attention")
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x):
B, T, C = x.shape
q, k, v = self.c_attn(x).split(self.config.n_embed, dim=2)
q = q.view(B, T, self.config.n_head, C // self.config.n_head).transpose(1, 2)
k = k.view(B, T, self.config.n_head, C // self.config.n_head).transpose(1, 2)
v = v.view(B, T, self.config.n_head, C // self.config.n_head).transpose(1, 2)
if self.flash:
y = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.config.dropout if self.training else 0,
is_causal=True,
)
else:
attn_pattern = (q @ k.transpose(-2, -1)) * (
1.0 / math.sqrt(k.shape[-1])
) # B, nh, T, T
attn_pattern = attn_pattern.masked_fill(
self.bias[:, :, :T, :T] == 0, float("-inf")
)
attn = F.softmax(attn_pattern, dim=-1)
y = attn @ v # B, nh, T, T @ B, nh, T, hs -> B, nh, T, hs
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
hidden_dim = 4 * config.n_embed
hidden_dim = int(2 * hidden_dim / 3)
self.w1 = nn.Linear(config.n_embed, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, config.n_embed, bias=False)
self.w3 = nn.Linear(config.n_embed, hidden_dim, bias=False)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.RMSNorm(config.n_embed)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.RMSNorm(config.n_embed)
self.ffd = FeedForward(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.ffd(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embed),
wpe=nn.Embedding(config.block_size, config.n_embed),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.RMSNorm(config.n_embed),
)
)
self.lm_head = nn.Linear(config.n_embed, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith("c_proj.weight"):
torch.nn.init.normal_(
p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)
)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.shape
pos_emb = self.transformer.wpe(
torch.arange(0, t, dtype=torch.long, device=device)
)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
logits = self.lm_head(x)
loss = F.cross_entropy(
logits.view(-1, logits.shape[-1]), targets.view(-1), ignore_index=-1
)
else:
logits = self.lm_head(x[:, [-1], :])
loss = None
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas, **extra_args
)
print(f"using fused AdamW: {use_fused}")
return optimizer
@torch.no_grad()
def generate(
self, idx, max_new_tokens, temperature=1.0, top_k=None, top_p=None, min_p=None
):
for _ in range(max_new_tokens):
context = (
idx
if idx.size(1) < self.config.block_size
else idx[:, -self.config.block_size :]
)
logits, _ = self(context)
logits = logits[:, -1, :] / temperature
if top_p is not None and top_p > 0.0:
probs = torch.softmax(logits, dim=-1)
sorted_probs, sorted_indices = torch.sort(
probs, descending=True, dim=-1
)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
mask = cumulative_probs >= top_p
mask[..., 0] = True
cutoff_indices = mask.int().argmax(dim=-1, keepdim=True)
top_p_mask = torch.zeros_like(logits, dtype=torch.bool)
for b in range(logits.size(0)):
cut = cutoff_indices[b].item()
kept_indices = sorted_indices[b, : cut + 1]
top_p_mask[b, kept_indices] = True
logits[~top_p_mask] = float("-inf")
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = float("-inf")
if min_p is not None and min_p > 0.0:
logit_max = logits.max(dim=-1, keepdim=True).values
threshold = logit_max + torch.log(
torch.tensor(min_p, device=logits.device, dtype=logits.dtype)
)
logits[logits < threshold] = float("-inf")
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
if idx_next == 2:
break
idx = torch.cat([idx, idx_next], dim=-1)
return idx