-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlearn_LBSN2Vec_embedding.c
520 lines (429 loc) · 17.3 KB
/
learn_LBSN2Vec_embedding.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
//mex CFLAGS='$CFLAGS -pthread -Ofast -march=native -Wall -funroll-loops -Wno-unused-result' learn_LBSN2Vec_embedding.c
#include "mex.h"
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "pthread.h"
#include "limits.h"
#include "string.h"
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define RAND_MULTIPLIER 25214903917
#define RAND_INCREMENT 11
double *expTable;
// input 1
long long *walk;
long long num_w;
long long num_wl;
// input 2
const mxArray *user_checkins; // hyperedges
long long num_u;
// input 3
long long *user_checkins_count;
// input 4
double *emb_n; //node embedding
long long num_n;
long long dim_emb;
// input 5
double starting_alpha;
double alpha;
// input 6
double num_neg;
// input 7
long long *neg_sam_table_social; // negative sampling table social network
long long table_size_social;
// input 8
long long win_size;
// input 9
const mxArray *neg_sam_table_mobility; // negative sampling table checkins
long long table_num_mobility;
long long *neg_sam_table_mobility1;
long long table_size_mobility1;
long long *neg_sam_table_mobility2;
long long table_size_mobility2;
long long *neg_sam_table_mobility3;
long long table_size_mobility3;
long long *neg_sam_table_mobility4;
long long table_size_mobility4;
// input 10
long long num_epoch;
// input 11
long long num_threads;
// input 12
double mobility_ratio;
// double *counter;
// double *alpha_Katz_Table;
// unsigned long next_random_max=0;
const mxArray *temp;
void getNextRand(unsigned long *next_random){
*next_random = (*next_random) * (unsigned long) RAND_MULTIPLIER + RAND_INCREMENT;
}
long long get_a_neg_sample(unsigned long next_random, long long *neg_sam_table, long long table_size){
long long target_n;
unsigned long long ind;
ind = (next_random >> 16) % table_size;
target_n = neg_sam_table[ind];
return target_n;
}
long long get_a_checkin_sample(unsigned long next_random, long long table_size){
return (next_random >> 16) % table_size;
}
double sigmoid(double f) {
if (f >= MAX_EXP) return 1;
else if (f <= -MAX_EXP) return 0;
else return expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2 ))];
}
int get_a_neg_sample_Kless1(unsigned long next_random){
double v_rand_uniform = (double) next_random/(double)(ULONG_MAX);
if (v_rand_uniform<=num_neg){
return 1;
}else{
return 0;
}
}
int get_a_social_decision(unsigned long next_random){
double v_rand_uniform = (double) next_random/(double)(ULONG_MAX);
if (v_rand_uniform<=mobility_ratio){
return 0;
}else{
return 1;
}
}
int get_a_mobility_decision(unsigned long next_random){
double v_rand_uniform = (double) next_random/(double)(ULONG_MAX);
if (v_rand_uniform<=mobility_ratio){
return 1;
}else{
return 0;
}
}
double get_norm_l2_loc(long long loc_node){
double norm = 0;
for (int d=0; d<dim_emb; d++) norm = norm + emb_n[loc_node+d] * emb_n[loc_node+d];
return sqrt(norm);
}
double get_norm_l2_pr(double *vec){
double norm = 0;
for (int d=0; d<dim_emb; d++) norm = norm + vec[d] * vec[d];
return sqrt(norm);
}
void learn_a_pair_loc_loc_cosine(int flag, long long loc1, long long loc2, double *loss)
{
double f=0,tmp1,tmp2,c1,c2,c3; //f2=0,
double norm1 = get_norm_l2_loc(loc1);
double norm2 = get_norm_l2_loc(loc2);
for (int d=0;d<dim_emb;d++)
f += emb_n[loc1+d] * emb_n[loc2+d];
c1 = 1/(norm1*norm2)*alpha;
c2 = f/(norm1*norm1*norm1*norm2)*alpha;
c3 = f/(norm1*norm2*norm2*norm2)*alpha;
if (flag==1){
// *loss += f;
for (int d=0; d<dim_emb; d++){
tmp1 = emb_n[loc1 + d];
tmp2 = emb_n[loc2 + d];
emb_n[loc2 + d] += c1*tmp1 - c3*tmp2;
emb_n[loc1 + d] += c1*tmp2 - c2*tmp1;
}
}else{
// *loss -= f/num_neg;
for (int d=0; d<dim_emb; d++){
tmp1 = emb_n[loc1 + d];
tmp2 = emb_n[loc2 + d];
emb_n[loc2 + d] -= c1*tmp1 - c3*tmp2;
emb_n[loc1 + d] -= c1*tmp2 - c2*tmp1;
}
}
}
void learn_a_pair_loc_pr_cosine(int flag, long long loc1, double *best_fit, double *loss)
{
double f=0,g=0,a=0,c1,c2; //f2=0,
double norm1 = get_norm_l2_loc(loc1);
for (int d=0;d<dim_emb;d++)
f += emb_n[loc1+d] * best_fit[d];
g = f/norm1;
a = alpha;
c1 = 1/(norm1)*a;
c2 = f/(norm1*norm1*norm1)*a;
if (flag==1){
// *loss += g;
for (int d=0; d<dim_emb; d++)
emb_n[loc1 + d] += c1*best_fit[d] - c2*emb_n[loc1 + d];
}else{
// *loss -= g/num_neg;
for (int d=0; d<dim_emb; d++)
emb_n[loc1 + d] -= c1*best_fit[d] - c2*emb_n[loc1 + d];
}
}
void learn_an_edge(long long word, long long target_e, unsigned long *next_random, double* counter)
{
long long target_n, loc_neg;
long long loc_w = (word-1)*dim_emb;
long long loc_e = (target_e-1)*dim_emb;
learn_a_pair_loc_loc_cosine(1, loc_w, loc_e, counter);
if (num_neg<1){
getNextRand(next_random);
if (get_a_neg_sample_Kless1(*next_random)==1){
getNextRand(next_random);
target_n = get_a_neg_sample(*next_random, neg_sam_table_social, table_size_social);
if ((target_n != target_e) && (target_n != word)){
loc_neg = (target_n-1)*dim_emb;
learn_a_pair_loc_loc_cosine(0, loc_w, loc_neg, counter);
}
}
}else{
for (int n=0;n<num_neg;n++){
getNextRand(next_random);
target_n = get_a_neg_sample(*next_random, neg_sam_table_social, table_size_social);
if ((target_n != target_e) && (target_n != word)){
loc_neg = (target_n-1)*dim_emb;
learn_a_pair_loc_loc_cosine(0, loc_w, loc_neg, counter);
}
}
}
}
void learn_an_edge_with_BFT(long long word, long long target_e, unsigned long *next_random, double *best_fit, double* counter)
{
long long target_n, loc_neg;
double norm;
long long loc_w = (word-1)*dim_emb;
long long loc_e = (target_e-1)*dim_emb;
for (int d=0; d<dim_emb; d++) best_fit[d] = emb_n[loc_w+d] + emb_n[loc_e+d];
norm = get_norm_l2_pr(best_fit);
for (int d=0; d<dim_emb; d++) best_fit[d] = best_fit[d]/norm;
learn_a_pair_loc_pr_cosine(1, loc_w, best_fit, counter);
learn_a_pair_loc_pr_cosine(1, loc_e, best_fit, counter);
if (num_neg<1){
getNextRand(next_random);
if (get_a_neg_sample_Kless1(*next_random)==1){
getNextRand(next_random);
target_n = get_a_neg_sample(*next_random, neg_sam_table_social, table_size_social);
if ((target_n != target_e) && (target_n != word)){
loc_neg = (target_n-1)*dim_emb;
learn_a_pair_loc_pr_cosine(0, loc_neg, best_fit, counter);
}
}
}else{
for (int n=0;n<num_neg;n++){
getNextRand(next_random);
target_n = get_a_neg_sample(*next_random, neg_sam_table_social, table_size_social);
if ((target_n != target_e) && (target_n != word)){
loc_neg = (target_n-1)*dim_emb;
learn_a_pair_loc_pr_cosine(0, loc_neg, best_fit, counter);
}
}
}
}
void learn_a_hyperedge(long long *edge, long long edge_len, unsigned long *next_random, double *best_fit, double* counter)
{
long long node, target_neg;
long long loc_n, loc_neg;
double norm;
//#################### get best-fit-line
for (int d=0; d<dim_emb; d++) best_fit[d] = 0;
for (int i=0; i<edge_len; i++) {
loc_n = (edge[i]-1)*dim_emb;
norm = get_norm_l2_pr(&emb_n[loc_n]);
for (int d=0; d<dim_emb; d++) best_fit[d] += emb_n[loc_n + d]/norm;
}
// normalize best fit line for fast computation
norm = get_norm_l2_pr(best_fit);
for (int d=0; d<dim_emb; d++) best_fit[d] = best_fit[d]/norm;
//#################### learn learn learn
for (int i=0; i<edge_len; i++) {
node = edge[i];
loc_n = (node-1)*dim_emb;
learn_a_pair_loc_pr_cosine(1, loc_n, best_fit, counter);
if (num_neg<1){
getNextRand(next_random);
if (get_a_neg_sample_Kless1(*next_random)==1){
getNextRand(next_random);
if (i==0) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility1, table_size_mobility1);
else if (i==1) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility2, table_size_mobility2);
else if (i==2) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility3, table_size_mobility3);
else if (i==3) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility4, table_size_mobility4);
if (target_neg != node) {
loc_neg = (target_neg-1)*dim_emb;
learn_a_pair_loc_pr_cosine(0, loc_neg, best_fit, counter);
}
}
}else{
for (int n=0;n<num_neg;n++){
getNextRand(next_random);
if (i==0) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility1, table_size_mobility1);
else if (i==1) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility2, table_size_mobility2);
else if (i==2) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility3, table_size_mobility3);
else if (i==3) target_neg = get_a_neg_sample(*next_random, neg_sam_table_mobility4, table_size_mobility4);
if (target_neg != node) {
loc_neg = (target_neg-1)*dim_emb;
learn_a_pair_loc_pr_cosine(0, loc_neg, best_fit, counter);
}
}
}
}
}
void merge_hyperedges(long long *edge_merged, long long* edge_merged_len, long long *a_edge, long long a_edge_len)
{
memcpy(edge_merged+(*edge_merged_len), a_edge, a_edge_len * sizeof(long long));
*edge_merged_len += a_edge_len;
}
void normalize_embeddings(){
long long loc_node;
double norm;
int i,d;
for (i=0;i<num_n;i++) {
loc_node = i*dim_emb;
norm=0;
for (d=0; d<dim_emb; d++) norm = norm + emb_n[loc_node+d] * emb_n[loc_node+d];
for (d=0; d<dim_emb; d++) emb_n[loc_node+d] = emb_n[loc_node+d]/sqrt(norm);
}
}
void learn(void *id)
{
long long word, target_e, a_checkin_ind, a_checkin_loc;
double *best_fit = (double *)mxMalloc(dim_emb*sizeof(double)); //a node embedding
double counter;
// double norm;
unsigned long next_random = (long) rand();
const mxArray *user_pr;
long long *a_user_checkins;
long long *edge;
long long edge_len = 4; // here 4 is a checkin node number user-time-POI-category
long long ind_start = num_w/num_threads * (long long)id;
long long ind_end = num_w/num_threads * ((long long)id+1);
long long ind_len = ind_end-ind_start;
double progress=0,progress_old=0;
alpha = starting_alpha;
long long loc_walk;
// mexPrintf("Thread %lld starts from hyperedges %lld to %lld\n",(long long)id,ind_start,ind_end);
for (int pp=0; pp<num_epoch; pp++){
counter = 0;
for (int w=ind_start; w<ind_end; w++) {
progress = ((pp*ind_len)+(w-ind_start)) / (double) (ind_len*num_epoch);
if (progress-progress_old > 0.001) {
alpha = starting_alpha * (1 - progress);
if (alpha < starting_alpha * 0.001) alpha = starting_alpha * 0.001;
progress_old = progress;
// if( (long long) id == 0) {
// mexPrintf("current alpha is: %f; Progress %.0f%%\n", alpha, progress*100);
// // shownorm();
// }
}
loc_walk = w*num_wl;
for (int i=0; i<num_wl; i++) {
word = walk[loc_walk+i];
for (int j=1;j<=win_size;j++){
getNextRand(&next_random);
if (get_a_social_decision(next_random)==1){
// printf("social \n");
if (i-j>=0) {
target_e = walk[loc_walk+i-j];
if (word!=target_e)
learn_an_edge_with_BFT(word, target_e, &next_random, best_fit, &counter);
// learn_an_edge(word, target_e, &next_random, &counter);
}
if (i+j<num_wl) {
target_e = walk[loc_walk+i+j];
if (word!=target_e)
learn_an_edge_with_BFT(word, target_e, &next_random, best_fit, &counter);
// learn_an_edge(word, target_e, &next_random, &counter);
}
}
// printf("user %d has %d checkins.\n",word,user_checkins_count[word-1]);
}
if ((user_checkins_count[word-1]>0) ){
for (int m=0; m < fmin(win_size*2,user_checkins_count[word-1]); m++){
getNextRand(&next_random);
if (get_a_mobility_decision(next_random)==1) {
// printf("mobility \n");
user_pr = mxGetCell(user_checkins, word-1);
a_user_checkins = (long long *)mxGetData(user_pr);
getNextRand(&next_random);
a_checkin_ind = get_a_checkin_sample(next_random, user_checkins_count[word-1]);
// printf("sampled checkin index is %d\n",a_checkin_ind);
a_checkin_loc = a_checkin_ind*edge_len;
edge = &a_user_checkins[a_checkin_loc];
// printf("sampled checkin is %d-%d-%d-%d\n",edge[0],edge[1],edge[2],edge[3]);
// if (a_checkin_ind > mxGetN(user_pr))
// printf("ERROR: sampled checkin index is %d with %d!=%d\n",a_checkin_ind,mxGetN(user_pr),user_checkins_count[word-1]);
//
// if (word != edge[0])
// printf("ERROR: user %d is not user %d!=%d\n",word,edge[0]);
learn_a_hyperedge(edge, edge_len, &next_random, best_fit, &counter);
}
}
}
}
}
// printf("Thread %lld iteration %d loss: %f \n",(long long)id, pp, counter);
}
// printf("counter (word=target_e) : %lld\n", counter);
mxFree(best_fit);
pthread_exit(NULL);
}
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
if(nrhs != 12) {
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nrhs",
"12 inputs required.");
}
if(nlhs != 1) {
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nlhs",
"1 output required.");
}
walk = (long long *)mxGetData(prhs[0]); // read from file
num_w = mxGetN(prhs[0]);
num_wl = mxGetM(prhs[0]);
user_checkins = prhs[1]; // user checkins cell
num_u = mxGetNumberOfElements(prhs[1]);
user_checkins_count = (long long *)mxGetData(prhs[2]);
emb_n = mxGetPr(prhs[3]);
num_n = mxGetN(prhs[3]);
dim_emb = mxGetM(prhs[3]);
starting_alpha = mxGetScalar(prhs[4]);
num_neg = mxGetScalar(prhs[5]);
neg_sam_table_social = (long long *)mxGetData(prhs[6]);
table_size_social = mxGetM(prhs[6]);
win_size = mxGetScalar(prhs[7]);
neg_sam_table_mobility = prhs[8];
table_num_mobility = mxGetNumberOfElements(prhs[8]);
if(table_num_mobility != 4) {
mexErrMsgTxt("four negative sample tables are required in neg_sam_table_mobility");
}
temp = mxGetCell(neg_sam_table_mobility, 0);
neg_sam_table_mobility1 = (long long *)mxGetData(temp);
table_size_mobility1 = mxGetM(temp);
temp = mxGetCell(neg_sam_table_mobility, 1);
neg_sam_table_mobility2 = (long long *)mxGetData(temp);
table_size_mobility2 = mxGetM(temp);
temp = mxGetCell(neg_sam_table_mobility, 2);
neg_sam_table_mobility3 = (long long *)mxGetData(temp);
table_size_mobility3 = mxGetM(temp);
temp = mxGetCell(neg_sam_table_mobility, 3);
neg_sam_table_mobility4 = (long long *)mxGetData(temp);
table_size_mobility4 = mxGetM(temp);
num_epoch = mxGetScalar(prhs[9]);
num_threads = mxGetScalar(prhs[10]);
mobility_ratio = mxGetScalar(prhs[11]);
mexPrintf("walk size = %d %d\n", num_w,num_wl);
mexPrintf("user checkins, user count = %d\n", num_u);
mexPrintf("num of nodes: %lld; embedding dimension: %lld\n",num_n,dim_emb);
mexPrintf("learning rate: %f\n",starting_alpha);
mexPrintf("negative sample number: %f\n",num_neg);
mexPrintf("social neg table size: %lld\n",table_size_social);
mexPrintf("mobility neg table num: %lld\n",table_num_mobility);
mexPrintf("mobility neg table sizes: %lld,%lld,%lld,%lld\n",table_size_mobility1,table_size_mobility2,table_size_mobility3,table_size_mobility4);
mexPrintf("num_epoch: %lld\n",num_epoch);
mexPrintf("num_threads: %lld\n",num_threads);
fflush(stdout);
long long a;
pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t));
for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, learn, (long long *)a);
for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL);
// learn(0);
//
// /* create the output matrix */
plhs[0] = mxDuplicateArray(prhs[3]);
//
}