This repository has been archived by the owner on Aug 26, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path002_parse_csv_to_rdf.py
executable file
·401 lines (350 loc) · 15.3 KB
/
002_parse_csv_to_rdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#!/usr/bin/env python3
#author: Harshvardhan J. Pandit
'''Take CSV and generate RDF from it'''
########################################
# How to read and understand this file #
# 1. Start from the end of the file
# 2. This script reads CSV files explicitly declared
# 3. It generates RDF terms using rdflib for Classes and Properties
# 4. It writes those terms to a file - one per each module
# 5. It combines all written files into dpv.ttl and dpv-gdpr.ttl
# This script assumes the input if well structured and formatted
# If it isn't, the 'erors' may silently propogate
# CSV FILES are in IMPORT_CSV_PATH
# RDF FILES are written to EXPORT_DPV_MODULE_PATH
########################################
IMPORT_CSV_PATH = './vocab_csv'
EXPORT_DPV_PATH = './vocab_dpv'
EXPORT_DPV_MODULE_PATH = './vocab_dpv/modules'
EXPORT_DPV_GDPR_PATH = './vocab_dpv_gdpr'
EXPORT_DPV_GDPR_MODULE_PATH = './vocab_dpv_gdpr/modules'
# serializations in the form of extention: rdflib name
RDF_SERIALIZATIONS = {
'rdf': 'xml',
'ttl': 'turtle',
'n3': 'n3',
'jsonld': 'json-ld'
}
import csv
from collections import namedtuple
from rdflib import Graph, Namespace
from rdflib.namespace import XSD
from rdflib import RDF, RDFS, OWL
from rdflib.term import Literal, URIRef, BNode
import logging
# logging configuration for debugging to console
logging.basicConfig(
level=logging.DEBUG, format='%(levelname)s - %(funcName)s :: %(lineno)d - %(message)s')
DEBUG = logging.debug
INFO = logging.info
DCT = Namespace('http://purl.org/dc/terms/')
DPV = Namespace('http://www.w3.org/ns/dpv#')
DPV_GDPR = Namespace('http://www.w3.org/ns/dpv-gdpr#')
FOAF = Namespace('http://xmlns.com/foaf/0.1/')
ODRL = Namespace('http://www.w3.org/ns/odrl/2/')
PROV = Namespace('http://www.w3.org/ns/prov#')
SKOS = Namespace('http://www.w3.org/2004/02/skos/core#')
SPL = Namespace('http://www.specialprivacy.eu/langs/usage-policy#')
SVD = Namespace('http://www.specialprivacy.eu/vocabs/data#')
SVDU = Namespace('http://www.specialprivacy.eu/vocabs/duration#')
SVL = Namespace('http://www.specialprivacy.eu/vocabs/locations#')
SVPR = Namespace('http://www.specialprivacy.eu/vocabs/processing#')
SVPU = Namespace('http://www.specialprivacy.eu/vocabs/purposes#')
SVR = Namespace('http://www.specialprivacy.eu/vocabs/recipients')
SW = Namespace('http://www.w3.org/2003/06/sw-vocab-status/ns#')
TIME = Namespace('http://www.w3.org/2006/time#')
# The dpv namespace is the default base for all terms
# Later, this is changed to write terms under DPV-GDPR namespace
BASE = DPV
NAMESPACES = {
'dct': DCT,
'dpv': DPV,
'dpv-gdpr': DPV_GDPR,
'foaf': FOAF,
'odrl': ODRL,
'owl': OWL,
'prov': PROV,
'rdf': RDF,
'rdfs': RDFS,
'skos': SKOS,
'spl': SPL,
'svd': SVD,
'svdu': SVDU,
'svl': SVL,
'svpr': SVPR,
'svpu': SVPU,
'svr': SVR,
'sw': SW,
'time': TIME,
'xsd': XSD,
}
# the field labels are based on what they should be translated to
DPV_Class = namedtuple('DPV_Class', [
'term', 'rdfs_label', 'dct_description', 'rdfs_subclassof',
'rdfs_seealso', 'relation', 'rdfs_comment', 'rdfs_isdefinedby',
'dct_created', 'dct_modified', 'sw_termstatus', 'dct_creator',
'resolution'])
DPV_Property = namedtuple('DPV_Property', [
'term', 'rdfs_label', 'dct_description',
'rdfs_domain', 'rdfs_range', 'rdfs_subpropertyof',
'rdfs_seealso', 'relation', 'rdfs_comment', 'rdfs_isdefinedby',
'dct_created', 'dct_modified', 'sw_termstatus', 'dct_creator',
'resolution'])
LINKS = {}
def extract_terms_from_csv(filepath, Class):
'''extracts data from file.csv and creates instances of Class
returns list of Class instances'''
# this is a hack to get parseable number of fields from CSV
# it relies on the internal data structure of a namedtuple
attributes = Class.__dict__
attributes = len(attributes['_fields'])
with open(filepath) as fd:
csvreader = csv.reader(fd)
next(csvreader)
terms = []
for row in csvreader:
# skip empty rows
if not row[0].strip():
continue
# extract required amount of terms, ignore any field after that
row = [term.strip() for term in row[:attributes]]
# create instance of required class
terms.append(Class(*row))
return terms
def add_common_triples_for_all_terms(term, graph):
'''Adds triples for any term to graph
Common triples are those shared by Class and Property
terms: data structure of term; is object with attributes
graph: rdflib graph
returns: None'''
# rdfs:label
graph.add((BASE[f'{term.term}'], RDFS.label, Literal(term.rdfs_label, lang='en')))
# dct:description
graph.add((BASE[f'{term.term}'], DCT.description, Literal(term.dct_description, lang='en')))
# rdfs:seeAlso
# TODO: use relation field for relevant terms
# currently this considers all terms that are related to use rdfs:seeAlso
# the next column contains the relation, parse and use that
if term.rdfs_seealso:
links = [l.strip() for l in term.rdfs_seealso.split(',')]
for link in links:
if link.startswith('http'):
graph.add((BASE[f'{term.term}'], RDFS.seeAlso, URIRef(link)))
elif ':' in link:
# assuming something like rdfs:Resource
prefix, label = link.split(':')
# gets the namespace from registered ones and create URI
# will throw an error if namespace is not registered
# dpv internal terms are expected to have the prefix i.e. dpv:term
link = NAMESPACES[prefix][f'{label}']
graph.add((BASE[f'{term.term}'], RDFS.seeAlso, link))
else:
graph.add((BASE[f'{term.term}'], RDFS.seeAlso, Literal(link, datatype=XSD.string)))
# rdfs:comment
if term.rdfs_comment:
graph.add((BASE[f'{term.term}'], RDFS.comment, Literal(term.rdfs_comment, lang='en')))
# rdfs:isDefinedBy
if term.rdfs_isdefinedby:
links = [l.strip() for l in term.rdfs_isdefinedby.replace('(','').replace(')','').split(',')]
link_iterator = iter(links)
for label in link_iterator:
link = next(link_iterator)
# add link to a temp file so that the label can be displayed in HTML
if not link in LINKS:
LINKS[link] = label
# add link to graph
if link.startswith('http'):
graph.add((BASE[f'{term.term}'], RDFS.isDefinedBy, URIRef(link)))
else:
graph.add((BASE[f'{term.term}'], RDFS.isDefinedBy, Literal(link, datatype=XSD.string)))
# dct:created
graph.add((BASE[f'{term.term}'], DCT.created, Literal(term.dct_created, datatype=XSD.date)))
# dct:modified
if term.dct_modified:
graph.add((BASE[f'{term.term}'], DCT.modified, Literal(term.dct_modified, datatype=XSD.date)))
# sw:term_status
graph.add((BASE[f'{term.term}'], SW.term_status, Literal(term.sw_termstatus, lang='en')))
# dct:creator
if term.dct_creator:
authors = [a.strip() for a in term.dct_creator.split(',')]
for author in authors:
graph.add((BASE[f'{term.term}'], DCT.creator, Literal(author, datatype=XSD.string)))
# resolution
# do nothing
return None
def add_triples_for_classes(classes, graph):
'''Adds triples for classes to graph
classes: list of CSV data rows
graph: rdflib graph
returns: None'''
for cls in classes:
# only add accepted classes
if cls.sw_termstatus != "accepted":
continue
# rdf:type
graph.add((BASE[f'{cls.term}'], RDF.type, RDFS.Class))
# rdfs:subClassOf
if cls.rdfs_subclassof:
parents = [p.strip() for p in cls.rdfs_subclassof.split(',')]
for parent in parents:
if parent.startswith('http'):
graph.add((BASE[f'{cls.term}'], RDFS.subClassOf, URIRef(parent)))
elif ':' in parent:
# assuming something like rdfs:Resource
prefix, term = parent.split(':')
# gets the namespace from registered ones and create URI
# will throw an error if namespace is not registered
# dpv internal terms are expected to have the prefix i.e. dpv:term
parent = NAMESPACES[prefix][f'{term}']
graph.add((BASE[f'{cls.term}'], RDFS.subClassOf, parent))
else:
graph.add((BASE[f'{cls.term}'], RDFS.subClassOf, Literal(parent, datatype=XSD.string)))
add_common_triples_for_all_terms(cls, graph)
return None
def add_triples_for_properties(properties, graph):
'''Adds triples for properties to graph
properties: list of CSV data rows
graph: rdflib graph
returns: None'''
for prop in properties:
# only record accepted classes
if prop.sw_termstatus != "accepted":
continue
# rdf:type
graph.add((BASE[f'{prop.term}'], RDF.type, RDF.Property))
# rdfs:domain
if prop.rdfs_domain:
# assuming something like rdfs:Resource
prefix, label = prop.rdfs_domain.split(':')
# gets the namespace from registered ones and create URI
# will throw an error if namespace is not registered
# dpv internal terms are expected to have the prefix i.e. dpv:term
link = NAMESPACES[prefix][f'{label}']
graph.add((BASE[f'{prop.term}'], RDFS.domain, link))
# rdfs:range
if prop.rdfs_range:
# assuming something like rdfs:Resource
prefix, label = prop.rdfs_range.split(':')
# gets the namespace from registered ones and create URI
# will throw an error if namespace is not registered
# dpv internal terms are expected to have the prefix i.e. dpv:term
link = NAMESPACES[prefix][f'{label}']
graph.add((BASE[f'{prop.term}'], RDFS.range, link))
# rdfs:subPropertyOf
if prop.rdfs_subpropertyof:
parents = [p.strip() for p in prop.rdfs_subpropertyof.split(',')]
for parent in parents:
if parent.startswith('http'):
graph.add((BASE[f'{prop.term}'], RDFS.subPropertyOf, URIRef(parent)))
elif ':' in parent:
# assuming something like rdfs:Resource
prefix, term = parent.split(':')
# gets the namespace from registered ones and create URI
# will throw an error if namespace is not registered
# dpv internal terms are expected to have the prefix i.e. dpv:term
parent = NAMESPACES[prefix][f'{term}']
graph.add((BASE[f'{prop.term}'], RDFS.subPropertyOf, parent))
else:
graph.add((BASE[f'{prop.term}'], RDFS.subPropertyOf, Literal(parent, datatype=XSD.string)))
add_common_triples_for_all_terms(prop, graph)
def serialize_graph(graph, filepath):
'''serializes given graph at filepath with defined formats'''
for ext, format in RDF_SERIALIZATIONS.items():
graph.serialize(f'{filepath}.{ext}', format=format)
INFO(f'wrote {filepath}.{ext}')
# #############################################################################
# DPV #
DPV_CSV_FILES = {
'base': {
'classes': f'{IMPORT_CSV_PATH}/BaseOntology.csv',
'properties': f'{IMPORT_CSV_PATH}/BaseOntology_properties.csv',
},
'personal_data_categories': {
'classes': f'{IMPORT_CSV_PATH}/PersonalDataCategory.csv',
},
'purposes': {
'classes': f'{IMPORT_CSV_PATH}/Purpose.csv',
'properties': f'{IMPORT_CSV_PATH}/Purpose_properties.csv',
},
'processing': {
'classes': f'{IMPORT_CSV_PATH}/Processing.csv',
'properties': f'{IMPORT_CSV_PATH}/Processing_properties.csv',
},
'technical_organisational_measures': {
'classes': f'{IMPORT_CSV_PATH}/TechnicalOrganisationalMeasure.csv',
'properties': f'{IMPORT_CSV_PATH}/TechnicalOrganisationalMeasure_properties.csv',
},
'entities': {
'classes': f'{IMPORT_CSV_PATH}/Entities.csv',
'properties': f'{IMPORT_CSV_PATH}/Entities_properties.csv'
},
'consent': {
'classes': f'{IMPORT_CSV_PATH}/Consent.csv',
'properties': f'{IMPORT_CSV_PATH}/Consent_properties.csv',
},
}
# this graph will get written to dpv.ttl
DPV_GRAPH = Graph()
for name, module in DPV_CSV_FILES.items():
graph = Graph()
for prefix, namespace in NAMESPACES.items():
graph.namespace_manager.bind(prefix, namespace)
if 'classes' in module:
classes = extract_terms_from_csv(module['classes'], DPV_Class)
DEBUG(f'there are {len(classes)} classes in {name}')
add_triples_for_classes(classes, graph)
if 'properties' in module:
properties = extract_terms_from_csv(module['properties'], DPV_Property)
DEBUG(f'there are {len(properties)} properties in {name}')
add_triples_for_properties(properties, graph)
serialize_graph(graph, f'{EXPORT_DPV_MODULE_PATH}/{name}')
DPV_GRAPH += graph
# add information about ontology
# this is assumed to be in file dpv-ontology-metadata.ttl
graph = Graph()
graph.load('dpv-ontology-metadata.ttl', format='turtle')
DPV_GRAPH += graph
for prefix, namespace in NAMESPACES.items():
DPV_GRAPH.namespace_manager.bind(prefix, namespace)
serialize_graph(DPV_GRAPH, f'{EXPORT_DPV_PATH}/dpv')
# DPV-GDPR #
# dpv-gdpr is the exact same as dpv in terms of requirements and structure
# except that the namespace is different
# so instead of rewriting the entire code again for dpv-gdpr,
# here I become lazy and instead change the DPV namespace to DPV-GDPR
BASE = NAMESPACES['dpv-gdpr']
DPV_GDPR_GRAPH = Graph()
DPV_GDPR_CSV_FILES = {
'legal_basis': {
'classes': f'{IMPORT_CSV_PATH}/GDPR_LegalBasis.csv',
},
'rights': {
'classes': f'{IMPORT_CSV_PATH}/GDPR_LegalRights.csv',
},
}
for name, module in DPV_GDPR_CSV_FILES.items():
graph = Graph()
for prefix, namespace in NAMESPACES.items():
graph.namespace_manager.bind(prefix, namespace)
if 'classes' in module:
classes = extract_terms_from_csv(module['classes'], DPV_Class)
DEBUG(f'there are {len(classes)} classes in {name}')
add_triples_for_classes(classes, graph)
if 'properties' in module:
properties = extract_terms_from_csv(module['properties'], DPV_Property)
DEBUG(f'there are {len(properties)} properties in {name}')
add_triples_for_properties(properties, graph)
serialize_graph(graph, f'{EXPORT_DPV_GDPR_MODULE_PATH}/{name}')
DPV_GDPR_GRAPH += graph
graph = Graph()
graph.load('dpv-gdpr-ontology-metadata.ttl', format='turtle')
DPV_GDPR_GRAPH += graph
for prefix, namespace in NAMESPACES.items():
DPV_GDPR_GRAPH.namespace_manager.bind(prefix, namespace)
serialize_graph(DPV_GDPR_GRAPH, f'{EXPORT_DPV_GDPR_PATH}/dpv-gdpr')
# #############################################################################
# Save collected links as resource for generating HTML A HREF in JINJA2 templates
# file is in jinja2_resources/links_labels.json
import json
with open('jinja2_resources/links_label.json', 'w') as fd:
fd.write(json.dumps(LINKS))