You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I ran using just the CPU, to improve performance, I wish to run using GPU, but received the following error:
Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run _EagerConst: Dst tensor is not initialized.
The complete message is:
File "/home/claudino/Projetos/OpenSource/stable-diffusion-tensorflow/stable_diffusion_tf/stable_diffusion.py", line 270, in get_models
diffusion_model.load_weights(diffusion_model_weights_fpath)
File "/home/claudino/miniconda3/envs/stable-diffusion/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/home/claudino/miniconda3/envs/stable-diffusion/lib/python3.10/site-packages/keras/backend.py", line 4302, in batch_set_value
x.assign(np.asarray(value, dtype=dtype_numpy(x)))
tensorflow.python.framework.errors_impl.InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run _EagerConst: Dst tensor is not initialized.
Cant determine the cause.
My environment:
(stable-diffusion) $> lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 22.04.1 LTS
Release: 22.04
Codename: jamm
(stable-diffusion) $> nvidia-smi
Tue Jan 17 17:31:00 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.60.13 Driver Version: 525.60.13 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:01:00.0 On | N/A |
| N/A 56C P8 7W / N/A | 208MiB / 6144MiB | 35% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1572 G /usr/lib/xorg/Xorg 109MiB |
| 0 N/A N/A 3293 C+G ...014073573827879945,131072 96MiB |
+-----------------------------------------------------------------------------+
Cuda 11.2, tensorflow 2.10.0, cudnn 8.1.0
The text was updated successfully, but these errors were encountered:
I ran using just the CPU, to improve performance, I wish to run using GPU, but received the following error:
The complete message is:
Cant determine the cause.
My environment:
Cuda 11.2, tensorflow 2.10.0, cudnn 8.1.0
The text was updated successfully, but these errors were encountered: