-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_pcbm_h_userstudy.py
235 lines (201 loc) · 8.19 KB
/
train_pcbm_h_userstudy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import pickle
import numpy as np
import torch
import argparse
import torch.nn as nn
from tqdm import tqdm
from pathlib import Path
from torch.utils.data import DataLoader, TensorDataset
from scipy.special import softmax
from sklearn.metrics import roc_auc_score
from data import get_dataset
from models import get_model
from models.pcbm_utils_prune import UserPosthocHybridCBM
from training_tools import (
load_or_compute_projections,
AverageMeter,
MetricComputer,
export,
)
def config():
parser = argparse.ArgumentParser()
parser.add_argument("--out-dir", required=True, type=str, help="Output folder")
parser.add_argument(
"--pcbm-path", default="", type=str, help="Trained PCBM module."
)
parser.add_argument(
"--concept-bank", required=True, type=str, help="Path to the concept bank."
)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--batch-size", default=64, type=int)
parser.add_argument("--dataset", default="cub", type=str)
parser.add_argument("--seeds", default="42", type=str, help="Random seeds")
parser.add_argument("--num-epochs", default=20, type=int)
parser.add_argument("--num-workers", default=4, type=int)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--l2-penalty", default=0.01, type=float)
parser.add_argument("--print-out", default=True, type=bool)
parser.add_argument("--token", help="Hugging Face Token", required=True)
parser.add_argument("--shifted-class", default="", required=True)
args = parser.parse_args()
args.seeds = [int(seed) for seed in args.seeds.split(",")]
return args
@torch.no_grad()
def eval_model(args, posthoc_layer, loader, num_classes):
epoch_summary = {"Accuracy": AverageMeter()}
tqdm_loader = tqdm(loader)
computer = MetricComputer(n_classes=num_classes)
all_preds = []
all_labels = []
correct_per_class = np.zeros(num_classes)
total_per_class = np.zeros(num_classes)
for batch_X, batch_Y in tqdm(loader):
batch_X, batch_Y = batch_X.to(args.device), batch_Y.to(args.device)
out = posthoc_layer(batch_X)
all_preds.append(out.detach().cpu().numpy())
all_labels.append(batch_Y.detach().cpu().numpy())
metrics = computer(out, batch_Y)
epoch_summary["Accuracy"].update(metrics["accuracy"], batch_X.shape[0])
summary_text = [f"Avg. {k}: {v.avg:.3f}" for k, v in epoch_summary.items()]
summary_text = "Eval - " + " ".join(summary_text)
tqdm_loader.set_description(summary_text)
_, predicted = torch.max(out.data, 1)
for i in range(batch_Y.size(0)):
label = batch_Y[i]
correct_per_class[label] += (predicted[i] == label).item()
total_per_class[label] += 1
per_class_accuracy = correct_per_class / total_per_class
all_preds = np.concatenate(all_preds, axis=0)
all_labels = np.concatenate(all_labels, axis=0)
if all_labels.max() == 1:
auc = roc_auc_score(all_labels, softmax(all_preds, axis=1)[:, 1])
return auc
return epoch_summary["Accuracy"], per_class_accuracy
def train_hybrid(
args, train_loader, val_loader, posthoc_layer, optimizer, num_classes, class_idx
):
cls_criterion = nn.CrossEntropyLoss()
for epoch in range(1, args.num_epochs + 1):
print(f"Epoch: {epoch}")
epoch_summary = {"CELoss": AverageMeter(), "Accuracy": AverageMeter()}
tqdm_loader = tqdm(train_loader)
computer = MetricComputer(n_classes=num_classes)
for batch_X, batch_Y in tqdm(train_loader):
batch_X, batch_Y = batch_X.to(args.device), batch_Y.to(args.device)
optimizer.zero_grad()
out, projections = posthoc_layer(batch_X, return_dist=True)
cls_loss = cls_criterion(out, batch_Y)
loss = (
cls_loss
+ args.l2_penalty * (posthoc_layer.residual_classifier.weight**2).mean()
)
loss.backward()
optimizer.step()
epoch_summary["CELoss"].update(cls_loss.detach().item(), batch_X.shape[0])
metrics = computer(out, batch_Y)
epoch_summary["Accuracy"].update(metrics["accuracy"], batch_X.shape[0])
summary_text = [f"Avg. {k}: {v.avg:.3f}" for k, v in epoch_summary.items()]
summary_text = " ".join(summary_text)
tqdm_loader.set_description(summary_text)
latest_info = dict()
latest_info["epoch"] = epoch
latest_info["args"] = args
latest_info["train_acc"] = epoch_summary["Accuracy"]
latest_info["test_acc"], class_accs = eval_model(
args, posthoc_layer, val_loader, num_classes
)
# class_accuracies = {idx_to_class[class_idx]: acc for class_idx, acc in enumerate(class_accs)}
latest_info["class_acc"] = class_accs[class_idx]
return latest_info
def main(args, backbone, preprocess):
if args.print_out == False: # For print control
os.environ["TQDM_DISABLE"] = "1"
torch.manual_seed(args.seed)
train_loader, test_loader, idx_to_class, classes = get_dataset(args, preprocess)
num_classes = len(classes)
shifted_class = classes.index(args.shifted_class)
hybrid_model_path = args.pcbm_path.replace("pcbm_", "pcbm-hybrid_")
run_info_file = (
Path(args.out_dir)
/ Path(hybrid_model_path.replace("pcbm", "run_info-pcbm"))
.with_suffix(".pkl")
.name
)
# We use the precomputed embeddings and projections.
train_embs, _, train_lbls, test_embs, _, test_lbls = load_or_compute_projections(
args, backbone, posthoc_layer, train_loader, test_loader
)
train_loader = DataLoader(
TensorDataset(
torch.tensor(train_embs).float(), torch.tensor(train_lbls).long()
),
batch_size=args.batch_size,
shuffle=True,
)
test_loader = DataLoader(
TensorDataset(torch.tensor(test_embs).float(), torch.tensor(test_lbls).long()),
batch_size=args.batch_size,
shuffle=False,
)
# Initialize PCBM-h
hybrid_model = UserPosthocHybridCBM(posthoc_layer)
hybrid_model = hybrid_model.to(args.device)
# Initialize the optimizer
hybrid_optimizer = torch.optim.Adam(
hybrid_model.residual_classifier.parameters(), lr=args.lr
)
hybrid_model.residual_classifier = hybrid_model.residual_classifier.float()
hybrid_model.bottleneck = hybrid_model.bottleneck.float()
# Train PCBM-h
run_info = train_hybrid(
args,
train_loader,
test_loader,
hybrid_model,
hybrid_optimizer,
num_classes,
shifted_class,
)
torch.save(hybrid_model, hybrid_model_path)
with open(run_info_file, "wb") as f:
pickle.dump(run_info, f)
print(f"Saved to {hybrid_model_path}, {run_info_file}")
return run_info
if __name__ == "__main__":
args = config()
# Load the PCBM
metric_list = []
class_list = []
# Execute main code
# main(args, backbone, preprocess)
for seed in args.seeds:
args.pcbm_path = (
"artifacts/outdir/pcbm_"
+ args.dataset
+ "__clip:RN50__multimodal_concept_clip:RN50_cifar100_recurse:1__lam:0.002__alpha:0.99__seed:"
+ str(seed)
+ ".ckpt"
)
posthoc_layer = torch.load(args.pcbm_path)
posthoc_layer = posthoc_layer.eval()
# Get the backbone from the model zoo.
args.backbone_name = posthoc_layer.backbone_name
backbone, preprocess = get_model(args, backbone_name=args.backbone_name)
backbone = backbone.to(args.device)
backbone.eval()
print(f"Seed: {seed}")
args.seed = seed
run_info = main(args, backbone, preprocess)
if "test_auc" in run_info:
metric = run_info["test_auc"]
else:
metric = run_info["test_acc"]
class_list.append(run_info["class_acc"])
metric_list.append(metric.avg)
out_name = "UserStudy_PCBM-h_results_" + args.dataset
export.export_to_json(out_name, metric_list)
print("Spurious class metrics >>>")
print(class_list)
print("Mean: {}".format(np.mean(class_list)))
print("Std: {}".format(np.std(class_list)))