-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_cav_activation.py
280 lines (242 loc) · 9.6 KB
/
test_cav_activation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import pickle
import numpy as np
import torch
from data import get_dataset
from concepts import ConceptBank
from models import PosthocLinearCBM, get_model
from training_tools import load_or_compute_projections, export
from data import get_concept_loaders
def config():
parser = argparse.ArgumentParser()
parser.add_argument(
"--concept-bank", required=True, type=str, help="Path to the concept bank"
)
parser.add_argument(
"--out-dir",
required=True,
type=str,
help="Folder containing model/checkpoints.",
)
parser.add_argument("--dataset", default="cifar10", type=str)
parser.add_argument("--concept-dataset", default="cub", type=str)
parser.add_argument("--backbone-name", default="resnet18_cub", type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seeds", default="42", type=str, help="Random seeds")
parser.add_argument("--batch-size", default=64, type=int)
parser.add_argument("--num-workers", default=4, type=int)
parser.add_argument(
"--alpha",
default=0.99,
type=float,
help="Sparsity coefficient for elastic net.",
)
parser.add_argument(
"--lam", default=None, type=float, help="Regularization strength."
)
parser.add_argument(
"--n-samples",
default=50,
type=int,
help="Number of positive/negative samples used to learn concepts.",
)
parser.add_argument(
"--softmax-concepts",
action="store_true",
default=False,
help="Wheter to softmax the concept matrix",
)
parser.add_argument(
"--temperature",
default=1,
type=float,
help="Temperature for softmaxing the concept matrix",
)
## arguments for the different projection matrix weights
parser.add_argument(
"--random_proj",
action="store_true",
default=False,
help="Whether to use random projection matrix",
)
parser.add_argument(
"--identity_proj",
action="store_true",
default=False,
help="Whether to use identity projection matrix",
)
args = parser.parse_args()
args.seeds = [int(seed) for seed in args.seeds.split(",")]
return args
def main(args, concept_bank, backbone, preprocess):
_, test_loader, idx_to_class, classes = get_dataset(args, preprocess)
# Get a clean conceptbank string
# e.g. if the path is /../../cub_resnet-cub_0.1_100.pkl, then the conceptbank string is resnet-cub_0.1_100
# which means a bank learned with 100 samples per concept with C=0.1 regularization parameter for the SVM.
# See `learn_concepts_dataset.py` for details.
num_classes = len(classes)
# Initialize the PCBM module.
posthoc_layer = PosthocLinearCBM(
concept_bank,
backbone_name=args.backbone_name,
idx_to_class=idx_to_class,
n_classes=num_classes,
)
posthoc_layer = posthoc_layer.to(args.device)
# Get the true concepts for the dataset, per image
concept_loaders = get_concept_loaders(
args.concept_dataset,
preprocess,
n_samples=args.n_samples,
batch_size=args.batch_size,
num_workers=args.num_workers,
seed=args.seed,
)
positive_projection_magnitude_per_concept = {}
negative_projection_magnitude_per_concept = {}
# We compute the projections and save to the output directory. This is to save time in tuning hparams / analyzing projections.
for i, concept_name in enumerate(concept_bank.concept_names):
if args.concept_dataset == "cub":
print(i, f" {concept_name}")
if i in concept_loaders.keys():
loaders = concept_loaders[i]
else:
continue
else:
loaders = concept_loaders[concept_name]
pos_loader, neg_loader = loaders["pos"], loaders["neg"]
_, train_projs_pos = load_or_compute_projections(
args,
backbone,
posthoc_layer,
pos_loader,
test_loader,
compute=True,
self_supervised=True,
)
_, train_projs_neg = load_or_compute_projections(
args,
backbone,
posthoc_layer,
neg_loader,
test_loader,
compute=True,
self_supervised=True,
)
if args.softmax_concepts:
temperature = args.temperature
train_projs_pos = train_projs_pos / temperature
train_projs_neg = train_projs_neg / temperature
# Max trick to prevent overflow
max_train_projs_pos = np.max(train_projs_pos, axis=1, keepdims=True)
max_train_projs_neg = np.max(train_projs_neg, axis=1, keepdims=True)
train_projs_pos_exp = np.exp(train_projs_pos - max_train_projs_pos)
train_projs_pos = train_projs_pos_exp / np.sum(
train_projs_pos_exp, axis=1, keepdims=True
)
train_projs_neg_exp = np.exp(train_projs_neg - max_train_projs_neg)
train_projs_neg = train_projs_neg_exp / np.sum(
train_projs_neg_exp, axis=1, keepdims=True
)
# Select only the projection of our current concept of interest
assert train_projs_pos.shape[1] == len(
concept_bank.concept_names
), "wrong dimension selected for concept of interest"
train_projs_pos = train_projs_pos[
:, concept_bank.concept_names.index(concept_name)
]
train_projs_neg = train_projs_neg[
:, concept_bank.concept_names.index(concept_name)
]
# Compute the average
positive_projection_magnitude_per_concept[concept_name] = np.mean(
train_projs_pos
)
negative_projection_magnitude_per_concept[concept_name] = np.mean(
train_projs_neg
)
print(positive_projection_magnitude_per_concept)
print(negative_projection_magnitude_per_concept)
# We get the total average activation for pos and neg
total_average_gap_activation = np.mean(
np.array(list(positive_projection_magnitude_per_concept.values()))
- np.array(list(negative_projection_magnitude_per_concept.values()))
)
total_average_neg_activation = np.mean(
list(negative_projection_magnitude_per_concept.values())
)
total_average_pos_activation = np.mean(
list(positive_projection_magnitude_per_concept.values())
)
print(f"total average gap activation: {total_average_gap_activation}")
print(f"total average neg activation: {total_average_neg_activation}")
print(f"total average pos activation: {total_average_pos_activation}")
run_info = {}
run_info["total_average_pos_activation"] = total_average_pos_activation
run_info["total_average_neg_activation"] = None
return run_info
if __name__ == "__main__":
args = config()
all_concepts = pickle.load(open(args.concept_bank, "rb"))
all_concept_names = list(all_concepts.keys())
print(
f"Bank path: {args.concept_bank}. {len(all_concept_names)} concepts will be used."
)
concept_bank = ConceptBank(all_concepts, args.device)
# to be completely robust to oversight, set all attributes (/ concept names) of the concept bank class to None
shape = concept_bank.vectors.shape
# change the following three attributes of the ConceptBank class
# self.cavs = concept_bank.vectors
# self.intercepts = concept_bank.intercepts -> seem svm based thing, why use these when you use clip concepts?
# self.norms = concept_bank.norms
if args.random_proj:
concept_bank.vectors = None
concept_bank.intercepts = None
concept_bank.norms = None
concept_bank.margin_info = None
print(concept_bank.vectors)
concept_bank.vectors = torch.randn((shape[0], shape[1])).to(args.device)
print(concept_bank.vectors)
concept_bank.norms = torch.norm(
concept_bank.vectors, p=2, dim=1, keepdim=True
).detach()
print(concept_bank.norms.shape)
concept_bank.vectors /= concept_bank.norms
concept_bank.norms = torch.norm(
concept_bank.vectors, p=2, dim=1, keepdim=True
).detach()
concept_bank.intercepts = torch.zeros(shape[0], 1).to(args.device)
elif args.identity_proj:
concept_bank.vectors = None
concept_bank.intercepts = None
concept_bank.norms = None
concept_bank.margin_info = None
print("identity projection used")
concept_bank.vectors = torch.eye(n=shape[1]).to(
args.device
) # (embedding dim x embedding dim identity matrix)
concept_bank.norms = torch.norm(
concept_bank.vectors, p=2, dim=1, keepdim=True
).detach()
concept_bank.intercepts = torch.zeros(shape[0], 1).to(args.device)
print(
f"concept vectors matrix rank is {torch.linalg.matrix_rank(concept_bank.vectors)}"
)
# Get the backbone from the model zoo.
backbone, preprocess = get_model(args, backbone_name=args.backbone_name)
backbone = backbone.to(args.device)
backbone.eval()
pos = []
neg = []
og_out_dir = args.out_dir
for seed in args.seeds:
print(f"Seed: {seed}")
args.seed = seed
args.out_dir = og_out_dir
run_info = main(args, concept_bank, backbone, preprocess)
pos.append(run_info["total_average_pos_activation"])
neg.append(run_info["total_average_neg_activation"])
# export results
out_name = "verify_dataset_pcbm_h"
export.export_to_json(out_name, pos)
export.export_to_json(out_name, neg)