-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.lean
53 lines (48 loc) · 1.8 KB
/
test2.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
variable {P : Nat → Prop} [I : DecidablePred P]
theorem wellFoundedPrinciple (h : ∃ n, P n) : ∃ n, P n ∧ ∀ m, m < n → ¬P m := by
cases h with | intro n h =>
have : ∀ m, m ≤ n → (∃ n, P n ∧ ∀ m, m < n → ¬P m) ∨ (∀ k, k < m → ¬P k) := by
intro m hm
induction m with
| zero => exact .inr λ _ hk => nomatch hk
| succ m ih =>
specialize ih <| Nat.le_of_succ_le hm
cases ih with
| inl ih => exact .inl ih
| inr ih =>
cases I m with
| isFalse h' =>
refine .inr ?_
intro k hk
cases hk with
| refl => exact h'
| step hk => exact ih k hk
| isTrue h' => exact .inl ⟨m, h', ih⟩
cases this n .refl with
| inl h' => exact h'
| inr h' => exact ⟨n, h, h'⟩
def foo {P : Nat → Prop} [I : DecidablePred P] (h : ∃ n, P n ∧ ∀ k, k < n → ¬P k) : Σ' n, P n :=
match I .zero with
| .isTrue h => ⟨.zero, h⟩
| .isFalse hn =>
let ⟨n, hn⟩ := @foo (P ·.succ) _ (match h with | ⟨.zero, hn', _⟩ => hn hn' |>.elim | ⟨.succ n, hn, hn'⟩ => ⟨n, hn, λ k hk => hn' k.succ (Nat.succ_lt_succ hk)⟩)
⟨n.succ, hn⟩
termination_by _ => Classical.choose h
decreasing_by {
simp_wf
match h with
| ⟨.zero, hn', _⟩ => cases hn hn'
| ⟨.succ n, hn', hn''⟩ =>
have h' : ∃ n, P n.succ ∧ ∀ k, k < n → ¬ P k.succ := ⟨n, hn', λ k hk => hn'' k.succ (Nat.succ_lt_succ hk)⟩
generalize hx : Classical.choose h = x
generalize hy : Classical.choose h' = y
apply Nat.gt_of_not_le
intro hxy
have := hx ▸ Classical.choose_spec h
cases x with
| zero => cases hn this.1
| succ x => cases hy ▸ Classical.choose_spec h' |>.2 x hxy this.1
}
def bar : (∃ n, P n) → Σ' n, P n := foo ∘ wellFoundedPrinciple
#print axioms bar
#check bar