-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSFNBE.lean
64 lines (56 loc) · 3 KB
/
PSFNBE.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
inductive Typ
| arr (τ₁ τ₂ : Typ)
| unit
| prod (τ₁ τ₂ : Typ)
| void
| sum (τ₁ τ₂ : Typ)
inductive Exp.Var (τ : Typ) : (Γ : List Typ) → Type
| head : Var τ (τ :: Γ)
| tail (x : Var τ Γ) : Var τ (τ' :: Γ)
deriving Repr
inductive Exp : (Γ : List Typ) → (τ : Typ) → Type
| var (x : Exp.Var τ Γ) : Exp Γ τ
| lam (e₂ : Exp (τ₁ :: Γ) τ₂) : Exp Γ (.arr τ₁ τ₂)
| ap (e : Exp Γ (.arr τ₁ τ₂)) (e₁ : Exp Γ τ₁) : Exp Γ τ₂
| triv : Exp Γ .unit
| pair (e₁ : Exp Γ τ₁) (e₂ : Exp Γ τ₂) : Exp Γ (.prod τ₁ τ₂)
| prl (e : Exp Γ (.prod τ₁ τ₂)) : Exp Γ τ₁
| prr (e : Exp Γ (.prod τ₁ τ₂)) : Exp Γ τ₂
| abort (e : Exp Γ .void) : Exp Γ τ
| inl (e : Exp Γ τ₁) : Exp Γ (.sum τ₁ τ₂)
| inr (e : Exp Γ τ₂) : Exp Γ (.sum τ₁ τ₂)
| case (e : Exp Γ (.sum τ₁ τ₂)) (e₁ : Exp (τ₁ :: Γ) τ) (e₂ : Exp (τ₂ :: Γ) τ) : Exp Γ τ
deriving Repr
mutual
inductive Value : (τ : Typ) → Type
| lam (ρ : Subst Γ) (e₂ : Exp (τ₁ :: Γ) τ₂) : Value (.arr τ₁ τ₂)
| triv : Value .unit
| pair (v₁ : Value τ₁) (v₂ : Value τ₂) : Value (.prod τ₁ τ₂)
| inl (v : Value τ₁) : Value (.sum τ₁ τ₂)
| inr (v : Value τ₂) : Value (.sum τ₁ τ₂)
deriving Repr
inductive Subst : (Γ : List Typ) → Type
| nil : Subst []
| cons (v : Value τ) (ρ : Subst Γ) : Subst (τ :: Γ)
end
def evalVar : (ρ : Subst Γ) → (e : Exp.Var τ Γ) → Value τ
| .cons v ρ, .head => v
| .cons v ρ, .tail x => evalVar ρ x
unsafe
def eval (ρ : Subst Γ) : (e : Exp Γ τ) → Value τ
| .var x => evalVar ρ x
| .lam e₂ => .lam ρ e₂
| .ap e e₁ => match eval ρ e with
| .lam ρ' e₂ => eval (.cons (eval ρ e₁) ρ') e₂
| .triv => .triv
| .pair e₁ e₂ => .pair (eval ρ e₁) (eval ρ e₂)
| .prl e => match eval ρ e with
| .pair v₁ v₂ => v₁
| .prr e => match eval ρ e with
| .pair v₁ v₂ => v₂
| .abort e => nomatch eval ρ e
| .inl e => .inl (eval ρ e)
| .inr e => .inr (eval ρ e)
| .case e e₁ e₂ => match eval ρ e with
| .inl v => eval (.cons v ρ) e₁
| .inr v => eval (.cons v ρ) e₂