-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHOAS4.lean
124 lines (102 loc) · 5.38 KB
/
HOAS4.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import Mathlib.Data.Fin.Tuple.Basic
import Rec
variable {motive : ∀ n, Fin n → Sort u} (zero : ∀ {n}, motive (.succ n) 0) (succ : ∀ {n} i, motive n i → motive n.succ i.succ) in
def Fin.recL : ∀ {n} i, motive n i
| .succ _, ⟨.zero, _⟩ => zero
| .succ _, ⟨.succ i, h⟩ => succ ⟨i, Nat.lt_of_succ_lt_succ h⟩ (recL _)
variable {motive : ∀ n, Fin n → Sort u} (castSucc : ∀ {n} i, motive n i → motive n.succ (.castSucc i)) (last : ∀ {n}, motive (.succ n) (.last _)) in
def Fin.recR : ∀ {n} i, motive n i
| .succ _, i =>
if h : i = _
then h ▸ last
else castSucc ⟨i, Nat.lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (h <| Fin.eq_of_val_eq ·)⟩ (recR _)
inductive Ty
| unit : Ty
| ar : Ty → Ty → Ty
namespace Level
inductive Exp : ∀ {n}, (Γ : Fin n → Ty) → (t : Ty) → Type
| var (l : Fin n) : Exp Γ (Γ l)
| triv : Exp Γ .unit
| lam (e : Exp (Fin.lastCases t₁ Γ) t₂) : Exp Γ (.ar t₁ t₂)
| app (e₁ : Exp Γ (.ar t₁ t₂)) (e₂ : Exp Γ t₁) : Exp Γ t₂
namespace Exp
def lift' : (e : Exp Γ t) → Exp (Fin.append Γ' Γ) t
| var l => have := var (Γ := Fin.append Γ' Γ) (Fin.natAdd _ l); by simp at this; exact this
| triv => triv
| lam e => by
rename_i n _ _ _
refine lam <| cast (congrArg (Exp · _) <| funext <| Fin.addCases (n := n + 1) ?_ ?_) (e.lift' (Γ' := Γ')) <;> intro i <;> simp
. apply Eq.symm
apply Eq.trans
apply Fin.lastCases_castSucc (i := Fin.castAdd n i)
simp
. cases i using Fin.lastCases <;> simp
show _ = Fin.lastCases _ _ (Fin.castSucc <| Fin.natAdd _ _)
simp
| app e₁ e₂ => app e₁.lift' e₂.lift'
def lift (e : Exp Fin.elim0 t) : Exp Γ t :=
have : Exp (Fin.append Γ Fin.elim0') t := e.lift'; by simp at this; exact this
def subst (e : Exp Γ t) (e' : Exp Fin.elim0 (Γ 0)) : Exp (Fin.tail Γ) t :=
match e with
| var l => l.cases e'.lift var
| triv => triv
| lam e => by
refine lam <| cast (congrArg (Exp · _) <| funext λ i => ?_) <| e.subst e'
cases i using Fin.lastCases <;> simp [Fin.tail]
apply Fin.lastCases_castSucc (i := Fin.succ _)
| app e₁ e₂ => app (e₁.subst e') (e₂.subst e')
def substAll {k} (e : Exp (k + n)) (es : Fin k → Exp) : Exp n :=
match k with
| 0 => n.zero_add ▸ e
| k + 1 => substAll (k.add_right_comm 1 n ▸ e) (Fin.init es) |>.subst (es (.last _))
theorem cast_var (l : Fin n) (h : n = n') : h ▸ var l = var (Fin.cast h l) := by cases h; rfl
theorem cast_lam (e : Exp (.succ n)) (h : n = n') : h ▸ lam e = lam (congrArg Nat.succ h ▸ e) := by cases h; rfl
theorem cast_app (e₁ e₂ : Exp n) (h : n = n') : h ▸ app e₁ e₂ = app (h ▸ e₁) (h ▸ e₂) := by cases h; rfl
theorem lift_zero : ∀ e : Exp, e.lift = e := by
suffices ∀ {n} (e : Exp n), e.lift' = (n.zero_add.symm ▸ e : Exp (0 + n)) from this
intro n e
induction e with simp [lift', cast_var, cast_lam, cast_app, *]
| var => simp [Fin.natAdd]; rfl
theorem subst_lift : ∀ {n} (e e' : Exp), e.lift.subst e' = e.lift (n := n) := by
suffices ∀ {n k} (e : Exp n) e', (k.succ_add n ▸ e.lift').subst e' = e.lift' (k := k) from λ {n} => this
intro n k e e'
induction e with simp [lift', cast_var, cast_lam, cast_app, subst, *]
| var => simp [Fin.natAdd, Nat.succ_add]
theorem substAll_var' (l : Fin n) {k} es : substAll (var <| Fin.natAdd k l) es = var l := by
induction k generalizing n with simp [substAll, cast_var]
| succ _ ih =>
simp [Fin.cast, Fin.castLe, Fin.castLt, Nat.succ_add]
specialize ih l.succ (Fin.init es)
simp [Fin.natAdd, Nat.add_succ] at ih
rw [ih]
rfl
theorem substAll_var {k} (l : Fin k) es : substAll (var <| Fin.castAdd n l) es = (es l).lift := by
induction l using Fin.recR generalizing n with simp [substAll, cast_var]
| castSucc l ih =>
specialize @ih n.succ (Fin.init es)
dsimp [Fin.cast, Fin.castAdd, Fin.castLe, Fin.castLt] at ih ⊢
rw [ih]
apply subst_lift (es _)
| last =>
dsimp [Fin.cast, Fin.castLe, Fin.castLt]
have := substAll_var' (0 : Fin n.succ) (Fin.init es)
dsimp [Fin.natAdd] at this
rw [this]
rfl
theorem substAll_lam {k} (e : Exp (.succ (k + n))) es : substAll (lam e) es = lam (substAll e es) := by
induction k generalizing n with simp [substAll, cast_lam]
| succ k ih => rw [ih]; simp [subst]
theorem substAll_app {k} (e₁ e₂ : Exp (k + n)) es : substAll (app e₁ e₂) es = app (substAll e₁ es) (substAll e₂ es) := by
induction k generalizing n with simp [substAll, cast_app]
| succ k ih => rw [ih]; simp [subst]
def rec' {motive : Exp → Sort u} (lam : ∀ e, (∀ e', motive e' → motive (e.subst e')) → motive (lam e)) (app : ∀ e₁ e₂, motive e₁ → motive e₂ → motive (app e₁ e₂)) : ∀ e, motive e :=
rec' Fin.elim0 finZeroElim
where
rec' {n} (es : Fin n → Exp) (hes : ∀ l, motive (es l)) : (e : Exp n) → motive (e.substAll (n := .zero) es)
| var l => substAll_var .. ▸ lift_zero _ ▸ hes l
| .lam e => substAll_lam .. ▸ lam _ λ e' he' =>
have := rec' (Fin.lastCases e' es) (Fin.lastCases (by simp; exact he') (λ i => by simp; exact hes i)) e
by simp [substAll] at this; (conv at «this» => enter [1, 2]; apply Fin.lastCases_last); dsimp [Fin.init] at this; (conv at «this» => enter [1, 1, 2]; apply funext <| Fin.lastCases_castSucc _ _); exact this
| .app e₁ e₂ => substAll_app .. ▸ app _ _ (rec' es hes e₁) (rec' es hes e₂)
end Exp
end Level