-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchannel_visual_modulation.py
92 lines (71 loc) · 3.5 KB
/
channel_visual_modulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 25 15:27:14 2022
@author: svc_ccg
"""
import EcephysBehaviorSession as ebs
import os, glob
import pandas as pd
import analysis
import numpy as np
df = pd.read_excel(r"C:\Users\svc_ccg\ccb_onedrive\OneDrive - Allen Institute\all_np_behavior_mice.xlsx")
opt_data_dir = r'\\allen\programs\mindscope\workgroups\np-behavior\processed_ALL'
def vis_mod(spikes, stim_times, monitor_lag=0.02):
if isinstance(spikes, float):
vm = 0
else:
psth, _ = analysis.makePSTH_numba(spikes.flatten(), stim_times-0.5, 0.75)
vm = (np.mean(psth[500:]) - np.mean(psth[:500]))/(np.mean(psth[500:]) + np.mean(psth[:500]))
return abs(vm)
h5_dir = r"C:\Data\NP_pipeline_h5s"
h5_list = [os.path.join(h5_dir, h) for h in os.listdir(h5_dir)]
overwrite = False
failed = []
for ir, dfrow in mdf.iterrows():#df.iloc[:100].iterrows():
try:
#check if we've already run this session
mouseID = str(dfrow['mouse_id'])
opt_dir = glob.glob(os.path.join(opt_data_dir, mouseID))
if len(opt_dir)==0:
raise ValueError('ERROR: Could not find opt dir for {}'.format(mouseID))
opt_dir = opt_dir[0]
vis_mod_save_name = os.path.join(opt_dir, 'channel_visual_modulation_' + str(dfrow['full_id']) + '.npy')
vis_mod_file = glob.glob(vis_mod_save_name)
if len(vis_mod_file)>0 and not overwrite:
print('skipping {}, vis mod data already exists'.format(dfrow['full_id']))
continue
#check if h5 file already exists for this session
h5 = [h for h in h5_list if dfrow['full_id'] in h]
if len(h5)>0 and False:
h5 = h5[0]
print('loading: {} number {} from h5'.format(h5, ir))
ee2 = ebs.EcephysBehaviorSession.from_h5(h5)
#if not, make session from scratch
else:
local_dir = dfrow['path']
print('loading: number {} from {}'.format(ir, local_dir))
ee2 = ebs.EcephysBehaviorSession.from_local(local_dir)
stim_table = ee2.stim_table
unit_table = ee2.unit_table
stim_times = stim_table.loc[(stim_table['stimulus_name'].str.contains('Natural')) &
(stim_table['omitted']==False)]['Start'].values
vm = unit_table.apply(lambda row: vis_mod(row['times'], stim_times[::10]), axis=1)
unit_table['vis_mod'] = vm
probe_vis_mod = {}
for probe in unit_table['probe'].unique():
channel_vis_mod = np.zeros(384)
unit_counts = np.ones(384)
for uir, urow in unit_table.iterrows():
if (urow['quality']=='good') and (urow['probe']==probe) and (urow['firing_rate']>0.1):
peak_channel = int(urow['peak_channel'])
channel_vis_mod[peak_channel] += urow['vis_mod']
unit_counts[peak_channel] += 1
channel_vis_mod = channel_vis_mod/unit_counts
channel_vis_mod = np.convolve(channel_vis_mod, np.ones(5), 'same')/5
probe_vis_mod[probe] = channel_vis_mod
#mouseID = dfrow['mouse_id']
#opt_dir = glob.glob(os.path.join(opt_data_dir, str(mouseID)))[0]
np.save(vis_mod_save_name, probe_vis_mod, allow_pickle=True)
except Exception as e:
print('failed to add {} due to {}'.format(dfrow['full_id'], e))
failed.append((dfrow['full_id'], e))