-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanual.html
923 lines (805 loc) · 28.4 KB
/
manual.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-03-19 Fri 15:35 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>pochoir user manual</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Brett Viren" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: auto;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline; margin-top: 14px;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="https://brettviren.github.io/moo/other/readtheorg/css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="https://brettviren.github.io/moo/other/readtheorg/css/readtheorg.css"/>
<script type="text/javascript" src="https://brettviren.github.io/moo/other/lib/js/jquery.min.js"></script>
<script type="text/javascript" src="https://brettviren.github.io/moo/other/lib/js/bootstrap.min.js"></script>
<script type="text/javascript" src="https://brettviren.github.io/moo/other/lib/js/jquery.stickytableheaders.min.js"></script>
<script type="text/javascript" src="https://brettviren.github.io/moo/other/readtheorg/js/readtheorg.js"></script>
<style> #content{max-width:1800px;}</style>
<style> p{max-width:800px;}</style>
<style> li{max-width:800px;}</style>
<style> pre.src{border-radius: 5px; background-color:#333; color:#0f0;}</style>
<style> pre.example{border-radius: 5px; background-color:#333; color:#0f0;}</style>
<style> code{border-radius: 5px; background-color:#333; color:#0f0;}</style>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:e95b018ef3580986a04669f1b5879592219e2a7a&dn=public-domain.txt Public Domain
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.classList.add("code-highlighted");
target.classList.add("code-highlighted");
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.classList.remove("code-highlighted");
target.classList.remove("code-highlighted");
}
}
/*]]>*///-->
// @license-end
</script>
</head>
<body>
<div id="content">
<h1 class="title">pochoir user manual</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgf1e1bc7">Introduction</a>
<ul>
<li><a href="#orgced7ad1">Overview of calculating response functions</a></li>
<li><a href="#org9765ae2">FDM for Laplace boundary value problem</a></li>
<li><a href="#org1eace20">RK4/5 for paths initial value problem</a></li>
</ul>
</li>
<li><a href="#orgd5e6fab">Getting started</a>
<ul>
<li><a href="#org0cd9beb">Installation</a></li>
<li><a href="#orgf7e744e">General usage</a></li>
<li><a href="#org081256a">Using CPU vs GPU</a></li>
<li><a href="#org4d2d806">Data and its storage</a></li>
</ul>
</li>
<li><a href="#orga9044d4">Tutorial</a>
<ul>
<li><a href="#orgb94f25c">Define the problem domain</a></li>
<li><a href="#org81a6911">Define initial and boundary value arrays</a></li>
<li><a href="#orgd00c747">Solve Laplace equation</a></li>
<li><a href="#orge9c1c5b">Calculate and visualize gradient fields</a></li>
<li><a href="#orgb436c02">Path initial value problem</a></li>
<li><a href="#org1cfab03">Calculate responses</a></li>
<li><a href="#org7a64c19">Convert to Wire-Cell</a></li>
<li><a href="#orge08789f">Automation with Snakemake</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-orgf1e1bc7" class="outline-2">
<h2 id="orgf1e1bc7">Introduction</h2>
<div class="outline-text-2" id="text-orgf1e1bc7">
<p>
This describes how to use <code>pochoir</code>.
</p>
<p>
Following sections:
</p>
<ul class="org-ul">
<li>getting started</li>
<li>usage tutorial</li>
<li>developer guide</li>
</ul>
<p>
Remaining subsections describe <code>pochoir</code> concepts
</p>
</div>
<div id="outline-container-orgced7ad1" class="outline-3">
<h3 id="orgced7ad1">Overview of calculating response functions</h3>
<div class="outline-text-3" id="text-orgced7ad1">
<ul class="org-ul">
<li>describe the steps and data products</li>
</ul>
</div>
</div>
<div id="outline-container-org9765ae2" class="outline-3">
<h3 id="org9765ae2">FDM for Laplace boundary value problem</h3>
<div class="outline-text-3" id="text-org9765ae2">
<ul class="org-ul">
<li>characteristics of problem where FDM is applicable (grid vs geometry feature sizes)</li>
<li>define terms
<ul class="org-ul">
<li>domain</li>
<li>boundary value problem
<ul class="org-ul">
<li>boundary and initial values and boundary condition</li>
</ul></li>
<li>initial value problem
<ul class="org-ul">
<li>paths</li>
</ul></li>
</ul></li>
</ul>
</div>
</div>
<div id="outline-container-org1eace20" class="outline-3">
<h3 id="org1eace20">RK4/5 for paths initial value problem</h3>
</div>
</div>
<div id="outline-container-orgd5e6fab" class="outline-2">
<h2 id="orgd5e6fab">Getting started</h2>
<div class="outline-text-2" id="text-orgd5e6fab">
</div>
<div id="outline-container-org0cd9beb" class="outline-3">
<h3 id="org0cd9beb">Installation</h3>
<div class="outline-text-3" id="text-org0cd9beb">
<ul class="org-ul">
<li>get package</li>
<li>venv options (<code>python -m venv venv ; source venv/bin/activate</code> and <code>echo layout python3 > .envrc; direnv allow</code>)</li>
<li>install (<code>pip install -e .</code> or <code>pip install [email protected]:wirecell/pochoir.git</code> or whatever)</li>
<li>testing (<code>pytest</code>)</li>
</ul>
</div>
</div>
<div id="outline-container-orgf7e744e" class="outline-3">
<h3 id="orgf7e744e">General usage</h3>
<div class="outline-text-3" id="text-orgf7e744e">
<ul class="org-ul">
<li>CLI help</li>
<li>general CLI vs command-level options</li>
<li>environment variables (<code>POCHOIR_STORE</code>)</li>
</ul>
</div>
</div>
<div id="outline-container-org081256a" class="outline-3">
<h3 id="org081256a">Using CPU vs GPU</h3>
<div class="outline-text-3" id="text-org081256a">
<ul class="org-ul">
<li>devices: "best" vs "numpy" vs torch "cpu" and "gpu" (still needs actual implementation to pick "best" or otherwise globally set)</li>
<li>selection via CLI options</li>
<li>when to care what device is used</li>
</ul>
</div>
</div>
<div id="outline-container-org4d2d806" class="outline-3">
<h3 id="org4d2d806">Data and its storage</h3>
<div class="outline-text-3" id="text-org4d2d806">
<ul class="org-ul">
<li>main data objects
<ul class="org-ul">
<li>domain</li>
<li>scalar fields</li>
<li>vector fields</li>
<li>path start points</li>
<li>full paths</li>
<li>responses</li>
</ul></li>
<li>separate input and output vs input+output store</li>
<li>HDF5 vs NPZ+JSON+directory
<ul class="org-ul">
<li>latter can work with snakemake or similar</li>
<li>converting between the two</li>
</ul></li>
<li>export formats
<ul class="org-ul">
<li>vtk</li>
</ul></li>
<li>input formats
<ul class="org-ul">
<li>invent something for electrode shape description, probably JSON based
<ul class="org-ul">
<li>maybe jsonnet</li>
</ul></li>
<li>do we allow import of data object from, say, external NPZ?</li>
</ul></li>
</ul>
</div>
</div>
</div>
<div id="outline-container-orga9044d4" class="outline-2">
<h2 id="orga9044d4">Tutorial</h2>
<div class="outline-text-2" id="text-orga9044d4">
<p>
This tutorial walks through the individual steps of calculating field
responses for a 2D problem and ends with an example of how to automate
the entire workflow.
</p>
</div>
<div id="outline-container-orgb94f25c" class="outline-3">
<h3 id="orgb94f25c">Define the problem domain</h3>
<div class="outline-text-3" id="text-orgb94f25c">
<p>
A <i>domain</i> of a problem is the space on which it is defined. A <code>pochoir</code>
domain is a <i>finite, uniform, rectilinear</i> (Cartesian) grid of points.
In general, the grid may be N-dimensional though practical problems
will require either 2D or 3D (or possibly a mix of both).
</p>
<p>
A domain can be created simply with the <code>pochoir domain</code> command:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir domain --help
</pre>
</div>
<pre class="example" id="orga921357">
Usage: pochoir domain [OPTIONS] NAME
Produce a "domain" and store it to the output dataset.
A domain describes a finite, uniform grid in N-D space in these terms:
- shape :: an N-D integer vector giving the number of grid
points in each dimension. Required.
- origin :: an N-D spatial vector identifying the location of
the grid point with all indices zero.
- spacing :: a scalar or N-D vector in same distance units as
used in origin and which gives a common or a per-dimension
spacing between neighboring grid points.
- first :: an N-D integer vector giving the first valid index in
each dimension (which is almost always the default, 0)
A vector is given as a comma-separated list of numbers.
Note: this description corresponds to vtk/paraview uniform rectilinear
grid, aka an "image".
Options:
-s, --shape TEXT The number of grid points in each dimension
-o, --origin TEXT The spatial location of zero index grid point (def=0's)
-s, --spacing TEXT The grid spacing as scalar or vector (def=1's)
-f, --first TEXT The first indices for each dimension (def=0's)
--help Show this message and exit.
</pre>
<p>
As shown in the help, each of the four vectors can be given on the
command line but only <code>shape</code> is required if the defaults are
sufficient. The size of the <code>shape</code> vector sets the dimension of the
domain.
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir domain --shape 100,100 --spacing 0.1 adomain
ls -l store/adomain/
</pre>
</div>
<pre class="example" id="org866e4a5">
total 16
-rw-rw-r-- 1 bv bv 280 Mar 19 15:35 first.npz
-rw-rw-r-- 1 bv bv 282 Mar 19 15:35 origin.npz
-rw-rw-r-- 1 bv bv 280 Mar 19 15:35 shape.npz
-rw-rw-r-- 1 bv bv 284 Mar 19 15:35 spacing.npz
</pre>
<div class="note" id="orgc95f524">
<p>
This listing assumes the NPZ based store is used. If using an HDF5 store,
these four arrays are stored as datasets in an HDF5 group named
<code>adomain</code>.
</p>
</div>
<p>
Once defined, a domain is referenced by the given name (<code>adomain</code> here).
</p>
</div>
</div>
<div id="outline-container-org81a6911" class="outline-3">
<h3 id="org81a6911">Define initial and boundary value arrays</h3>
<div class="outline-text-3" id="text-org81a6911">
<p>
An <i>initial value</i> array provides a scalar field from which the FDM
solution begins. Each element holds either a known, applied potential
or an initial guess. The <i>boundary value</i> array elements take a value
of 1 or 0. Unity indicates the corresponding element in the initial
value array should be considered a fixed applied potential and all
others are free to be adjusted by the FDM.
</p>
</div>
<div id="outline-container-orgab831cf" class="outline-4">
<h4 id="orgab831cf">Example initial and boundary value arrays</h4>
<div class="outline-text-4" id="text-orgab831cf">
<p>
A number of hard-wired examples are provided as examples:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir example --help
pochoir example list
pochoir example caps
</pre>
</div>
<pre class="example" id="org4413fe4">
Usage: pochoir example [OPTIONS] NAME
Generate a boundary and initial array example (try "list")
Options:
--help Show this message and exit.
caps
sandh
</pre>
<p>
Here, the <code>caps</code> example is created. It represents a fictional set of
parallel plate capacitors. The example populates arrays named
<code>caps-initial</code> and <code>caps-boundary</code> and they may be visualized:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir plot-image caps-boundary docs/caps-boundary.png
pochoir plot-image caps-initial docs/caps-initial.png
</pre>
</div>
<div id="org41c2913" class="figure">
<p><img src="docs/caps-boundary.png" alt="caps-boundary.png" />
</p>
</div>
<div id="orga6a6e49" class="figure">
<p><img src="docs/caps-initial.png" alt="caps-initial.png" />
</p>
</div>
</div>
</div>
<div id="outline-container-orgf9919dc" class="outline-4">
<h4 id="orgf9919dc">Custom electrode description</h4>
<div class="outline-text-4" id="text-orgf9919dc">
<p>
For arbitrary problems, the user may provide a description of the
electrodes and their applied potentials and <code>pochoir</code> will render them
to the domain grid.
</p>
<div class="caution" id="org911910a">
<p>
This is work still to be provided.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgd00c747" class="outline-3">
<h3 id="orgd00c747">Solve Laplace equation</h3>
<div class="outline-text-3" id="text-orgd00c747">
<p>
The Laplace equation can be solved by specifying <i>initial</i> and <i>boundary</i>
value arrays, boundary conditions and convergence requirements.
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir fdm --help
</pre>
</div>
<pre class="example" id="org969d3e7">
Usage: pochoir fdm [OPTIONS] SOLUTION ERROR
Solve a Laplace boundary value problem with finite difference method
storing the result as named solution. The error names an output array to
hold difference in last two iterations.
Options:
-i, --initial TEXT Name initial value array, elements include boundary
values
-b, --boundary TEXT Name the boundary array, zero value elemnts subject
to solving
-e, --edges TEXT Comma separated list of 'fixed' or 'periodic' giving
domain edge conditions
--precision FLOAT Finish when no changes larger than precision
--epoch INTEGER Number of iterations before any check
-n, --nepochs INTEGER Limit number of epochs (def: one epoch)
--help Show this message and exit.
</pre>
<p>
We may make a trial solution which we save it and its error to <code>caps-solution1</code> and <code>caps-error1</code> arrays, respectively
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir fdm -e periodic,periodic \
-i caps-initial -b caps-boundary \
--epoch 10 -n 1 \
caps-solution1 caps-error1
</pre>
</div>
<pre class="example" id="org5addb1f">
maxerr: 43.046966552734375
</pre>
<p>
The maximum difference between the solution at the penultimate and
last iteration is the printed <code>maxerr</code>.
</p>
<p>
We can visualize solution and error:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir plot-image caps-solution1 docs/caps-solution1.png
pochoir plot-image caps-error1 docs/caps-error1.png
</pre>
</div>
<div id="orga35f886" class="figure">
<p><img src="docs/caps-solution1.png" alt="caps-solution1.png" />
</p>
</div>
<div id="orga3471b6" class="figure">
<p><img src="docs/caps-error1.png" alt="caps-error1.png" />
</p>
</div>
<p>
The error is rather high and although this domain is small which makes
the solution fast, we may reuse this first solution as the <i>initial
value</i> array for continued solution:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir fdm -e periodic,periodic \
-i caps-solution1 -b caps-boundary \
--epoch 10 -n 1 \
caps-solution2 caps-error2
</pre>
</div>
<pre class="example" id="orgc4864bb">
maxerr: 21.263214111328125
</pre>
<div class="org-src-container">
<pre class="src src-shell">pochoir plot-image caps-solution2 docs/caps-solution2.png
pochoir plot-image caps-error2 docs/caps-error2.png
</pre>
</div>
<div id="org49e157a" class="figure">
<p><img src="docs/caps-solution2.png" alt="caps-solution2.png" />
</p>
</div>
<div id="org05bf33d" class="figure">
<p><img src="docs/caps-error2.png" alt="caps-error2.png" />
</p>
</div>
<p>
We can continue this manual, high-level iteration or take a guess for
the total number of internal iterations to reach the desired error
level. Or, we may tell <code>pochoir fdm</code> to continue until either the
requested number of epochs are reached or the <code>maxerr</code> falls below a
requested precision. When using a precision, it is checked only after
each epoch is complete and so the result will typically be
over-precise.
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir fdm -e periodic,periodic \
-i caps-solution2 -b caps-boundary \
--epoch 10 -n 100 --precision 0.1 \
caps-solution3 caps-error3
</pre>
</div>
<pre class="example" id="org8f29fa2">
maxerr: 13.02484130859375
maxerr: 8.48162841796875
maxerr: 5.6507568359375
maxerr: 3.921722412109375
maxerr: 2.8282470703125
maxerr: 2.056884765625
maxerr: 1.50787353515625
maxerr: 1.12823486328125
maxerr: 0.855926513671875
maxerr: 0.65093994140625
maxerr: 0.496307373046875
maxerr: 0.37939453125
maxerr: 0.2906494140625
maxerr: 0.2232666015625
maxerr: 0.17201995849609375
maxerr: 0.13336181640625
maxerr: 0.10352325439453125
maxerr: 0.08056640625
</pre>
<p>
The solution is reached prior to 100 epochs. Again, let's see it:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir plot-image caps-solution3 docs/caps-solution3.png
pochoir plot-image caps-error3 docs/caps-error3.png
</pre>
</div>
<div id="org93554cd" class="figure">
<p><img src="docs/caps-solution3.png" alt="caps-solution3.png" />
</p>
</div>
<div id="orgc5af1ce" class="figure">
<p><img src="docs/caps-error3.png" alt="caps-error3.png" />
</p>
</div>
</div>
<div id="outline-container-org70a1c4e" class="outline-4">
<h4 id="org70a1c4e">3D Laplace</h4>
<div class="outline-text-4" id="text-org70a1c4e">
<ul class="org-ul">
<li>change in args w.r.t. 2D</li>
<li>understand time/resource scaling with 2D</li>
<li>visualize (matplotlib and paraview)</li>
</ul>
</div>
</div>
<div id="outline-container-orgb14950a" class="outline-4">
<h4 id="orgb14950a">Use 2D as boundary condition for 3D</h4>
<div class="outline-text-4" id="text-orgb14950a">
<ul class="org-ul">
<li>derive 3D boundary values to 2D and merge with 3D boundary values</li>
<li>understand precision of 2D as a function of 3D domain size</li>
</ul>
</div>
</div>
<div id="outline-container-org89d4b9d" class="outline-4">
<h4 id="org89d4b9d">Weighting fields</h4>
<div class="outline-text-4" id="text-org89d4b9d">
<p>
The fantasy example of <code>caps</code> sets boundary values applicable for
calculating the "real", applied potential. The overall field response
is tabulated for each <i>sensitive electrode</i> by calculating that
electrode's <i>weighting potential</i>. Thus we must apply the <code>pochoir fdm</code>
command as above to a <i>boundary value</i> which sets the grid points on the
sensitive electrode to unity and all others to zero.
</p>
<div class="warning" id="org916cbb0">
<p>
FIXME: How best to specify this and manage the results is a WIP.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orge9c1c5b" class="outline-3">
<h3 id="orge9c1c5b">Calculate and visualize gradient fields</h3>
<div class="outline-text-3" id="text-orge9c1c5b">
<p>
The <i>gradient</i> of a scalar field gives a vector field. The E-field is
the gradient of the applied potential scalar field and is needed for
the next step of calculating paths. The W-fields, one per sensitive
electrode are needed for the step after, calculating responses to
paths.
</p>
<p>
The <code>pochoir grad</code> command will calculate and store the gradient
allowing for visualization and later use.
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir grad --help
</pre>
</div>
<pre class="example" id="org6a6436f">
Usage: pochoir grad [OPTIONS] SCALAR VECTOR
Calculate the gradient of a scalar field.
Options:
-d, --domain TEXT Use named dataset for the domain, (def: indices)
--help Show this message and exit.
</pre>
<div class="org-src-container">
<pre class="src src-shell">pochoir grad \
--domain adomain \
caps-solution3 caps-efield3
</pre>
</div>
<p>
We may visualize this field with:
</p>
<div class="org-src-container">
<pre class="src src-shell">pochoir plot-quiver \
--domain adomain \
caps-efield3 docs/caps-efield3.png
</pre>
</div>
<div id="org5a3f5c7" class="figure">
<p><img src="docs/caps-efield3.png" alt="caps-efield3.png" />
</p>
</div>
<ul class="org-ul">
<li>2D and 3D matplotlib</li>
<li>paraview</li>
</ul>
</div>
</div>
<div id="outline-container-orgb436c02" class="outline-3">
<h3 id="orgb436c02">Path initial value problem</h3>
<div class="outline-text-3" id="text-orgb436c02">
<ul class="org-ul">
<li>specify problem to solve</li>
<li>specify initial value</li>
<li>apply solver</li>
<li>store result</li>
<li>visualize (matplotlib and paraview)</li>
</ul>
</div>
</div>
<div id="outline-container-org1cfab03" class="outline-3">
<h3 id="org1cfab03">Calculate responses</h3>
<div class="outline-text-3" id="text-org1cfab03">
<ul class="org-ul">
<li>combine path and fields for schockley-ramo</li>
<li>exploit symmetry and equivalences</li>
<li>visualize</li>
</ul>
</div>
</div>
<div id="outline-container-org7a64c19" class="outline-3">
<h3 id="org7a64c19">Convert to Wire-Cell</h3>
</div>
<div id="outline-container-orge08789f" class="outline-3">
<h3 id="orge08789f">Automation with Snakemake</h3>
<div class="outline-text-3" id="text-orge08789f">
<ul class="org-ul">
<li>full chain, repeatable, performant processing</li>
<li>what knobs to tune</li>
</ul>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Brett Viren</p>
<p class="date">Created: 2021-03-19 Fri 15:35</p>
<p class="validation"><a href="https://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>
</html>