-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_admm_convergence.py
166 lines (130 loc) · 5.36 KB
/
plot_admm_convergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import absolute_import, division, print_function
import copy
import torch
import numpy as np
import random
import matplotlib.pyplot as plt
from sequential.admm import ADMMWorker, ADMMAggregator
from sequential.worker import fedavg
from utils.mock import MockModel
from utils.admm_parameter_tuner import ADMMParameterTuner
def generate_models(num, device, dim=1):
models = []
for _ in range(num):
state_dict = {'weight': torch.rand(dim)}
models.append(MockModel(state_dict, device))
return models
def get_value(state_dict):
return state_dict['weight'].item()
COLORS = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w']
def to_math_text(name):
if name == 'lr':
return r'$\rho$'
else:
return name
def run_admm_and_plot(aggregator_base, attr_name, attr_values, max_iter, mean,
plot_xs=False, plot_lambdas=False):
num_workers = len(aggregator_base.admm_workers)
n_rows = 1
if plot_xs:
xs_row = n_rows
n_rows += 1
if plot_lambdas:
lambda_row = n_rows
n_rows += 1
n_cols = num_workers
xs = list(range(1, max_iter+1))
fig = plt.figure(figsize=(num_workers * 4, 4))
gs = fig.add_gridspec(n_rows, n_cols)
zs_axes = [fig.add_subplot(gs[0, 0])]
for i in range(1, num_workers):
zs_axes.append(fig.add_subplot(gs[0, i], sharey=zs_axes[0]))
if plot_xs:
xs_axes = [fig.add_subplot(gs[xs_row, i]) for i in range(num_workers)]
if plot_lambdas:
lambdas_axes = [fig.add_subplot(gs[lambda_row, i])
for i in range(num_workers)]
for attr_value, color in zip(attr_values, COLORS[:len(attr_values)]):
aggregator = copy.deepcopy(aggregator_base)
setattr(aggregator, attr_name, attr_value)
zs_history_list = [[] for i in range(num_workers)]
xs_history_list = [[] for i in range(num_workers)]
lambda_history_list = [[] for i in range(num_workers)]
for _ in range(max_iter):
for i in range(num_workers):
worker = aggregator.admm_workers[i]
lambda_history_list[i].append(worker.lambdas[0].item())
aggregator.run_step()
for i in range(num_workers):
worker = aggregator.admm_workers[i]
xs_history_list[i].append(worker.xs[0].item())
for i in range(num_workers):
worker = aggregator.admm_workers[i]
zs_history_list[i] = [get_value(zs) for zs in worker.zs_history]
aggregated_zs_history = [get_value(zs) for zs in aggregator.zs_history]
print('{}={}, zs='.format(attr_name, attr_value))
for i, zs in enumerate(zs_history_list):
print('\t{}: {}'.format(i, zs))
print('\tAVG: {}'.format(aggregated_zs_history))
for i in range(num_workers):
ax = zs_axes[i]
# plot zs
ax.plot(xs, zs_history_list[i],
color=color, label='{}={}'.format(
to_math_text(attr_name), attr_value))
ax.plot(xs, aggregated_zs_history, color=color, linestyle='dashed')
ax.hlines(mean, 1, max_iter, linestyles='dotted')
if i == 0:
ax.set_ylabel('$z$')
#ax.set_xticks(np.arange(1, max_iter+1, 1))
ax.legend()
if plot_xs:
ax = xs_axes[i]
w = get_value(aggregator.admm_workers[i].model.state_dict())
ax.hlines(w, 1, max_iter)
ax.hlines(mean, 1, max_iter, linestyles='dashed')
ax.plot(xs, xs_history_list[i],
color=color, label='{}={}'.format(
to_math_text(attr_name), attr_value))
if i == 0:
ax.set_ylabel('$x$')
ax.set_xticks(np.arange(1, max_iter+1, 1))
ax.legend()
if plot_lambdas:
ax = lambdas_axes[i]
ax.plot(xs, lambda_history_list[i],
color=color, label='{}={}'.format(
to_math_text(attr_name), attr_value))
if i == 0:
ax.set_ylabel(r'$\lambda$')
ax.set_xticks(np.arange(1, max_iter+1, 1))
ax.legend()
plt.show()
def main():
num_workers = 5
device = torch.device('cpu')
weights = [1/num_workers] * num_workers
max_iter = 10
models = generate_models(num_workers, device)
def rho_gen_fn(lr):
return random.uniform(0.9 * lr, 1.1 * lr)
workers = [ADMMWorker(model, device, record_zs_history=True)
for model in models]
mean = get_value(fedavg(models, weights=weights))
print('Mean:', mean)
aggregator_base = ADMMAggregator(workers, weights,
max_iter=max_iter, threshold=0.0,
lr=None,
decay_rate=None, decay_period=None)
##### Different decay rates #####
# aggregator_base.lr = 2
# aggregator_base.decay_period = 1
# decay_rates = [1, 0.8, 0.5, 0.3]
# run_admm_and_plot(aggregator_base, 'decay_rate',
# decay_rates, max_iter, mean)
##### Different lrs #####
lrs = [3, 1, 0.3]
run_admm_and_plot(aggregator_base, 'lr', lrs, max_iter, mean,
plot_xs=False, plot_lambdas=False)
if __name__ == "__main__":
main()