-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecentralized_simulation_main.py
182 lines (149 loc) · 5.63 KB
/
decentralized_simulation_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import absolute_import, division, print_function
import argparse
import numpy as np
import time
import torch
import torch.multiprocessing as mp
import torch.optim as optim
import torch.nn.functional as F
from torchvision import transforms
from datasets.partition import get_partition
from decentralized.worker import Worker
from nets.net_factory import create_net
from utils.train import TrainArguments
from utils.test import TestArguments
import utils.flags as flags
import utils.logger as logger
_LOGGER = logger.get_logger(__file__)
def run_worker(rank, args):
device = torch.device('cpu')
net_args = create_net(args.model, batch_size=args.batch_size)
model = net_args.model
load_dataset_fn = net_args.load_dataset_fn
train_fn = net_args.train_fn
test_fn = net_args.test_fn
loss_fn = net_args.loss_fn
world_size = args.num_workers
_LOGGER.info('world_size: %d', world_size)
partition_kwargs = {
"world_size": world_size,
"seed": args.seed,
"ratios": args.split_ratios,
"max_num_users_per_worker": args.max_num_users_per_worker,
}
partition = get_partition(
load_dataset_fn(train=True, **vars(args)),
rank=rank, **partition_kwargs)
_LOGGER.info('rank: %d, #clients: %d', rank, len(partition.client_ids))
data_loader = torch.utils.data.DataLoader(
partition, batch_size=args.batch_size, shuffle=True)
test_args = None
if args.validation_period:
test_partition = get_partition(
load_dataset_fn(train=False, **vars(args)),
rank=rank, **partition_kwargs)
assert partition.client_ids == test_partition.client_ids
test_data_loader = torch.utils.data.DataLoader(
test_partition, batch_size=args.batch_size)
test_args = TestArguments(
data_loader=test_data_loader,
model=model,
device=device,
period=args.validation_period,
test_fn=test_fn)
admm_kwargs = None
if args.use_admm:
admm_kwargs = {
'max_iter': args.admm_max_iter,
'threshold': args.admm_threshold,
'lr': args.admm_lr,
'decay_period': args.admm_decay_period,
'decay_rate': args.admm_decay_rate,
}
train_args = TrainArguments(
data_loader=data_loader,
device=device,
model=model,
optimizer=optim.Adam(model.parameters(), lr=args.lr),
loss_fn=loss_fn,
log_every_n_steps=args.log_every_n_steps,
train_fn=train_fn,
)
worker = Worker(rank, args.num_workers,
args.init_method, args.timeout,
admm_kwargs=admm_kwargs)
local_epochs = args.local_epochs
weight = None
if args.adjust_local_epochs or args.weighted_avg:
num_batches = []
for i in range(args.num_workers):
num_batches.append(len(get_partition(
load_dataset_fn(train=True, **vars(args)),
rank=i, **partition_kwargs)))
if args.adjust_local_epochs:
lcm = np.lcm.reduce(num_batches)
ratio = lcm / num_batches
ratio *= args.local_epochs * args.num_workers / np.sum(ratio)
local_epochs = ratio[rank]
local_epochs = 1 if local_epochs < 1 else int(local_epochs)
if args.weighted_avg:
weight = num_batches[rank] / np.sum(num_batches)
_LOGGER.info('rank: %d, weight: %f', rank, weight)
worker.run(args.epochs, local_epochs, train_args, test_args,
without_sync=args.wo_sync, weight=weight,
save_period=args.save_period, save_dir=args.save_dir)
DEFAULT_ARGS = {
'init_method': 'tcp://127.0.0.1:23456',
'timeout': 1800,
}
def check_args_validity(args):
flags.check_admm_args(args)
if args.save_period:
assert args.save_period > 0
assert args.save_dir
def main():
parser = argparse.ArgumentParser()
flags.add_base_flags(parser)
flags.add_admm_flags(parser)
parser.add_argument(
'--init_method', default=DEFAULT_ARGS['init_method'],
help='init method to use for torch.distributed (default={})'.format(
DEFAULT_ARGS['init_method']))
parser.add_argument(
'--model', required=True, help='name of ML model to train')
parser.add_argument(
'--wo_sync', action='store_true', help='disable the synchronization')
parser.add_argument(
'--timeout', type=int, default=DEFAULT_ARGS['timeout'],
help='timeout for torch.dist in sec (default={})'.format(
DEFAULT_ARGS['timeout']))
parser.add_argument(
'--adjust_local_epochs', action='store_true',
help='adjust local epochs depending on # mini-batches')
parser.add_argument(
'--weighted_avg', action='store_true',
help='Enable the weighted avg based on # mini-batches')
parser.add_argument(
'--save_dir',
help='save model states to the given path')
parser.add_argument(
'--save_period', type=int,
help='save model states in every given epoch')
parser.add_argument(
'--secure_admm', action='store_true', help='use secure admm')
args = parser.parse_args()
check_args_validity(args)
_LOGGER.info('Seed: %d', args.seed)
torch.manual_seed(args.seed)
ts = time.time()
processes = []
for rank in range(args.num_workers):
p = mp.Process(target=run_worker,
args=(rank, args))
p.start()
processes.append(p)
for p in processes:
p.join()
_LOGGER.info('Total elapsed time: {}'.format(time.time() - ts))
if __name__ == "__main__":
main()