-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
79 lines (74 loc) · 3.5 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import pandas as pd
import numpy as np
import sys
from datetime import datetime, timedelta
from ml_asruns import get_as_run
from dazzler_schedule import get_planned
def get_day(channelId, account, region, day):
t = datetime.fromisoformat(f'{day}T00:00:00+01:00')
s = t - timedelta(hours=4)
e = t + timedelta(hours=24)
return get_as_run(channelId, account, region, s.isoformat(), e.isoformat())
def watched(audience_row, schedule):
s = audience_row['start']
e = audience_row['end']
startsWithin = schedule.loc[s:e]
# starting before the session and ending within the session
missedTheStart = schedule.loc[(schedule.index < s) & (schedule['e'] > s) & (schedule['e'] <= e)].copy()
missedTheStart['seen'] = missedTheStart['e'] - s
# starting and ending within the session
sawItAll = startsWithin.loc[startsWithin['e'] <= e].copy()
sawItAll['seen'] = sawItAll['d']
# starting within the session and ending after
missedTheEnd = startsWithin.loc[startsWithin['e'] > e].copy()
missedTheEnd['seen'] = e - missedTheEnd.index
# starting before the session and ending after the session
sampledIt = schedule.loc[(schedule.index < s) & (schedule['e'] > e)].copy()
sampledIt['seen'] = e - s
wanted = pd.concat([missedTheStart, sawItAll, missedTheEnd, sampledIt])
wanted['User ID'] = audience_row['User ID']
wanted['AV - Playback time'] = wanted['seen'] / np.timedelta64(1, 'ms')
wanted['Item Start'] = wanted.index.tz_convert('Europe/London').tz_localize(None)
wanted['Session Start'] = audience_row['start'].tz_localize(None)
wanted['Session End'] = audience_row['end'].tz_localize(None)
return wanted
def getscheduleforsessions(sessions, bucket, sid):
first = sessions.index.tz_convert('UTC').min().date()
last = sessions['end'].array.tz_convert('UTC').max().date()
r = pd.date_range(first, last)
s = []
for d in r:
day = d.date().isoformat()
data = get_planned(bucket, sid, day)
s = s + data
sched = pd.DataFrame.from_records(s)
sched.index = pd.to_datetime(sched['start'])
sched['d'] = pd.to_timedelta(sched['duration'])
sched['e'] = pd.to_datetime(sched['end'])
return sched
def getaudiencedata(filename):
viewers = pd.read_csv(filename, header=0, index_col=2, dtype={'a': str, 'b': str, 'c': object, 'd': np.float64, 'e': np.int32, 'f': np.float64}, parse_dates=True)
viewers.index = viewers.index.tz_localize('Europe/London')
viewers['start'] = viewers.index
viewers['end'] = viewers.index + pd.to_timedelta(viewers['AV - Playback time'], unit='ms')
return viewers
audience_data = sys.argv[1]
sid = sys.argv[2]
bucket = sys.argv[3]
viewers = getaudiencedata(audience_data)
sched = getscheduleforsessions(viewers, bucket, sid)
with pd.ExcelWriter(audience_data.replace('.csv', '-dazzler.xlsx')) as writer:
n = 0
for d in pd.date_range(viewers.index.min(), viewers.index.max()):
day = d.date().isoformat()
print(f'processing {day}')
viewsonday = viewers.loc[day]
l = []
for index, row in viewsonday.iterrows():
l.append(watched(row, sched))
n = n + 1
sheet = pd.concat(l)
sheet.index = sheet.index.tz_convert('Europe/London').tz_convert(None)
sheet = sheet[['User ID', 'pid', 'Item Start', 'AV - Playback time', 'title', 'Session Start', 'Session End']]
sheet.to_excel(writer, sheet_name=day, index=False)
print(f'there are {len(viewers)} rows of data and {n} groups of processed data')