-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathq14_promotion_effect.py
85 lines (65 loc) · 2.91 KB
/
q14_promotion_effect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
TPC-H Problem Statement Query 14:
The Promotion Effect Query determines what percentage of the revenue in a given year and month was
derived from promotional parts. The query considers only parts actually shipped in that month and
gives the percentage. Revenue is defined as (l_extendedprice * (1-l_discount)).
The above problem statement text is copyrighted by the Transaction Processing Performance Council
as part of their TPC Benchmark H Specification revision 2.18.0.
"""
from datetime import datetime
import pyarrow as pa
from datafusion import SessionContext, col, lit
from datafusion import functions as F
from util import get_data_path
DATE = "1995-09-01"
date_of_interest = lit(datetime.strptime(DATE, "%Y-%m-%d").date())
interval_one_month = lit(pa.scalar((0, 30, 0), type=pa.month_day_nano_interval()))
# Load the dataframes we need
ctx = SessionContext()
df_lineitem = ctx.read_parquet(get_data_path("lineitem.parquet")).select(
"l_partkey", "l_shipdate", "l_extendedprice", "l_discount"
)
df_part = ctx.read_parquet(get_data_path("part.parquet")).select("p_partkey", "p_type")
# Check part type begins with PROMO
df_part = df_part.filter(
F.substring(col("p_type"), lit(0), lit(6)) == lit("PROMO")
).with_column("promo_factor", lit(1.0))
df_lineitem = df_lineitem.filter(col("l_shipdate") >= date_of_interest).filter(
col("l_shipdate") < date_of_interest + interval_one_month
)
# Left join so we can sum up the promo parts different from other parts
df = df_lineitem.join(
df_part, left_on=["l_partkey"], right_on=["p_partkey"], how="left"
)
# Make a factor of 1.0 if it is a promotion, 0.0 otherwise
df = df.with_column("promo_factor", F.coalesce(col("promo_factor"), lit(0.0)))
df = df.with_column("revenue", col("l_extendedprice") * (lit(1.0) - col("l_discount")))
# Sum up the promo and total revenue
df = df.aggregate(
[],
[
F.sum(col("promo_factor") * col("revenue")).alias("promo_revenue"),
F.sum(col("revenue")).alias("total_revenue"),
],
)
# Return the percentage of revenue from promotions
df = df.select(
(lit(100.0) * col("promo_revenue") / col("total_revenue")).alias("promo_revenue")
)
df.show()