-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdigit_recognizer.py
82 lines (73 loc) · 3.19 KB
/
digit_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import input_data
import conv_network
import LRmodel
import numpy as np
from tensorflow.python import keras
import os
num_classes = 10
img_rows, img_cols = 28, 28
def prep_data(data, train_size):
'''
:param data: data with both features and labels
:param train_size: no. of examples in training data
:return: X, y
'''
x = data[0]
y = data[1]
out_y = keras.utils.to_categorical(y, num_classes)
out_x = x.reshape(train_size, img_rows, img_cols, 1)
return out_x, out_y
# creating weights folder if deleted
if os.path.isdir('weights') == False:
os.mkdir('weights')
# list of filename of the weights and saved model
weights_files = os.listdir('weights')
weights_files = sorted(weights_files)
# files that should be there to load the models
correct_files = ['LR_params.npy', 'cnn_accuracy.npy', 'cnn_model.json', 'cnn_weights.h5']
if weights_files == correct_files:
# loading the LR weights
LR_params = np.load('weights/LR_params.npy')
# loading the cnn model using json
CNN_acc = np.load('weights/cnn_accuracy.npy')
json_file = open('weights/cnn_model.json', 'r')
model = json_file.read()
json_file.close()
model_conv = keras.models.model_from_json(model)
# loading the cnn weights into the models
model_conv.load_weights('weights/cnn_weights.h5')
# printing LR saved models parameters
print('Trained Logistic Regression')
print("Logistic Regression Train accuracy : ", LR_params.item().get('train_accuracy'))
print("Logistic Regression Test accuracy : {}%".format(LR_params.item().get('test_accuracy')))
print("Training size : {}, alpha : {}, iterations : {}\n\n".format(LR_params.item().get('train_size'),
LR_params.item().get('alpha'), LR_params.item().get('iters')))
# printing CNN saved models parameters
print('Trained Convolution Neural Network')
print('Train accuracy : ', CNN_acc.item().get('train_accuracy'))
print('Test accuracy : ', CNN_acc.item().get('test_accuracy'))
print('No. of epochs used = ', CNN_acc.item().get('epoch'))
else:
# loading the MNIST dataset
mnist = input_data.read_data_sets("data/", one_hot=False)
train_size, test_size = 8000, 1000
train_data = mnist.train.next_batch(train_size)
test_data = mnist.test.next_batch(test_size)
# preparing training and test data
train_x, train_y = prep_data(train_data, train_size)
test_x, test_y = prep_data(test_data, test_size)
# training and testing LR model
LR_params = LRmodel.model(train_x, train_y, test_x, test_y,
iters=2000, alpha=0.1, print_cost=True)
# training and testing CNN model
model_conv, CNN_accuracy = conv_network.model(train_x, train_y,
test_x, test_y, epoch=8)
np.save('weights/LR_params.npy', LR_params)
np.save('weights/cnn_accuracy.npy', CNN_accuracy)
# converting model to json
json_model = model_conv.to_json()
# saving the json model
with open('weights/cnn_model.json', 'w') as json_file:
json_file.write(json_model)
# saving weights of the cnn models
model_conv.save_weights('weights/cnn_weights.h5')