-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathchapterSearch.tex
225 lines (191 loc) · 6.28 KB
/
chapterSearch.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
\chapter{Search}
\section{Binary Search}
\runinhead{Variants:}
\begin{enumerate}
\item get the idx equal or just lower (floor)
\item get the idx equal or just higher (ceil)
\item \pyinline{bisect_left}
\item \pyinline{bisect_right} $\equiv$ \pyinline{bisect}
\end{enumerate}
Note the subtle differences.
\subsection{idx equal or just lower}
Binary search, get the idx of the element equal to or just lower than the target. The returned idx is the $A_{idx} \leq target$. It is possible to return $-1$. It is different from the \pyinline{bisect_lect}.
\runinhead{Core clues:}
\begin{enumerate}
\item To get ``equal'', \pyinline{return mid}.
\item To get ``just lower'', \pyinline{return lo-1}.
\end{enumerate}
$A_{idx} \leq target$.
\begin{python}
def bin_search(self, A, t, lo=0, hi=None):
if hi is None: hi = len(A)
while lo < hi:
mid = (lo+hi) // 2
if A[mid] == t: return mid
elif A[mid] < t: lo = mid+1
else: hi = mid
return lo-1
\end{python}
Using \pyinline{bisect_left} with multiple pre-checks to simply the find process.
\begin{python}
def find(A, v):
# A is sorted
if not A:
return None
if v >= A[-1]:
return A[-1]
if v < A[0]:
return None
idx = bisect_left(A, v)
if A[idx] == v:
return v
idx -= 1 # already checked before
return A[idx]
\end{python}
\subsection{idx equal or just higher}
$A_{idx} \geq target$.
\begin{python}
def bi_search(self, A, t, lo=0, hi=None):
if hi is None: hi = len(A)
while lo < hi:
mid = (lo+hi)/2
if A[mid] == t: return mid
elif A[mid] < t: lo = mid+1
else: hi = mid
return lo
\end{python}
\subsection{bisect\_left}
Return the index where to insert item x in list A. So if t already appears in the list,
A.insert(t) will insert just before the \textit{leftmost} t already there.
By insertion point \pyinline{i}, it means \pyinline{all(val <= x for val in A[lo:i])} for the left side and \pyinline{all(val > x for val in A[i:hi])} for the right side. \pyinline{A[i]} is the first element larger than x.
\runinhead{Core clues:}
\begin{enumerate}
\item Move \pyinline{lo} if $A_{mid} < t$
\item Move \pyinline{hi} if $A_{mid} \geq t$
\end{enumerate}
\begin{python}
def bisect_left(A, t, lo=0, hi=None):
if hi is None: hi = len(A)
while lo < hi:
mid = (lo+hi)/2
if A[mid] < t: lo = mid+1
else: hi = mid
return lo
\end{python}
\subsection{bisect\_right}
Return the index where to insert item x in list A. So if t already appears in the list, A.insert(t) will insert just after the \textit{rightmost} x already there.
\runinhead{Core clues:}
\begin{enumerate}
\item Move \pyinline{lo} if $A_{mid} \leq t$
\item Move \pyinline{hi} if $A_{mid} > t$
\end{enumerate}
\begin{python}
def bisect_right(A, t, lo=0, hi=None):
if hi is None: hi = len(A)
while lo < hi:
mid = (lo+hi)/2
if A[mid] <= t: lo = mid+1
else: hi = mid
return lo
\end{python}
\section{Applications}
\subsection{Rotation}
\runinhead{Find Minimum in Rotated Sorted Array.} Case by case analysis. Three cases to consider:
\begin{enumerate}
\item Monotonous
\item Trough
\item Peak
\end{enumerate}
If the elements can be duplicated, need to detect and skip.
\begin{python}
def find_min(self, A):
lo = 0
hi = len(A)
mini = sys.maxsize
while lo < hi:
mid = (lo+hi)/2
mini = min(mini, A[mid])
if A[lo] == A[mid]: # JUMP
lo += 1
elif A[lo] < A[mid] <= A[hi-1]:
return min(mini, A[lo])
elif A[lo] > A[mid] <= A[hi-1]: # trough
hi = mid
else: # peak
lo = mid+1
return mini
\end{python}
\section{Combinations}
\subsection{Extreme-value problems}\label{extremeValueProblem}
\runinhead{Longest increasing subsequence.} Array $A$.
Clues:
\begin{enumerate}
\item \pyinline{MIN}: \textit{min} of index \textit{last} value of LIS of a particular \textit{\textbf{len}}.
\item \pyinline{PI}: result table, store the $\pi$'s idx (predecessor); (optional, to build the LIS, no need if only needs to return the length of LIS)
\item \pyinline{bin_search}: For each currently scanning index \pyinline{i}, if it smaller (i.e. $\neg$ increasing), to maintain the \pyinline{MIN}, binary search to find the position to update the min value. The \pyinline{bin_search} need to find the element $\geq$ to \pyinline{A[i]}.
\end{enumerate}
\newpage
\begin{python}
def LIS(self, A):
n = len(A)
MIN = [-1 for _ in range(n+1)]
k = 1
MIN[k] = A[0] # store value
for v in A[1:]:
idx = bisect.bisect_left(MIN, v, 1, k+1)
MIN[idx] = v
k += 1 if idx == k+1 else 0
return k
\end{python}
If need to return the LIS itself.
\begin{python}
n = len(A)
MIN = [-1 for _ in range(n+1)]
RET = [-1 for _ in range(n)]
l = 1
MIN[l] = 0 # store index
for i in range(1, n):
if A[i] > A[MIN[l]]:
l += 1
MIN[l] = i
PI[i] = MIN[l-1] # (PI)
else:
j = self.bin_search(MIN, A, A[i], 1, l+1)
MIN[j] = i
PI[i] = MIN[j-1] if j-1 >= 1 else -1 # (PI)
# build the LIS (RET)
cur = MIN[l]
ret = []
while True:
ret.append(A[cur])
if PI[cur] == -1: break
cur = PI[cur]
ret = ret[::-1]
print ret
\end{python}
\section{High dimensional search}
\subsection{2D}
\runinhead{2D search matrix I.} $m\times n$ mat. Integers in each row are sorted from left to right. The first integer of each row is greater than the last integer of the previous row.
$$
\begin{bmatrix}
1 & 3 & 5 & 7 \\
10 & 11 & 16 & 20 \\
23 & 30 & 34 & 50 \\
\end{bmatrix}
$$
Row column search: starting at top right corner: $O(m+n)$.
Binary search: search rows and then search columns: $O(\log m + \log n)$.
\runinhead{2D search matrix II.} $m\times n$ mat. Integers in each row are sorted from
left to right. Integers in each column are sorted in ascending from top to bottom.
$$
\begin{bmatrix}
1& 4& 7& 11& 15 \\
2& 5& 8& 12& 19 \\
3& 6& 9& 16& 22 \\
10& 13& 14& 17& 24 \\
18& 21& 23& 26& 30 \\
\end{bmatrix}
$$
Row column search: starting at top right corner: $O(m+n)$.
Binary search: search rows and then search columns, but upper bound row and lower bound row:
$$O\big(\min(n\log m, m\log n)\big)$$