-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathchapterBacktracking.tex
474 lines (406 loc) · 12 KB
/
chapterBacktracking.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
\chapter{Backtracking}
\section{Introduction}
\runinhead{Difference between backtracking and dfs.} \textit{Backtracking} is a more general purpose algorithm. \textit{Dfs} is a specific form of backtracking related to searching tree structures.
\runinhead{Prune.} Backtrack need to think about pruning using the condition \pyinline{predicate}.
\runinhead{Jump.} Jump to skip ones the same as its parent to avoid duplication.
\runinhead{Complexity.} $O(b^d)$, where $b$ is the branching factor and $d$ is the depth.
\section{Memoization}
dfs can be memoized.
\begin{python}
import functools
@functools.lru_cache(maxsize=None)
def dfs(self, *args):
pass
\end{python}
\section{Sequence}
\runinhead{k sum.} Given $n$ unique integers, number $k$ and target. Find all possible $k$ integers where their sum is target.
Complexity: $O(2^n)$.
Pay attention to the pruning condition.
\begin{python}
def dfs(self, A, i, k, cur, remain, ret):
"""self.dfs(A, 0, k, [], target, ret)"""
if len(cur) == k and remain == 0:
ret.append(list(cur)) # clone
return
if i >= len(A) or len(cur) > k
or len(A) - i + len(cur) < k:
return
# not select
self.dfs(A, i+1, k, cur, remain, ret)
# select
cur.append(A[i])
self.dfs(A, i+1, k, cur, remain-A[i], ret)
cur.pop()
\end{python}
\section{String}
In general,
\begin{itemize}
\item Break down the sequence into \pyinline{left} and \pyinline{right} two parts.
\item Choose \pyinline{left} as terminal state, while DFS search the \pyinline{right}.
\item Combine \pyinline{left} and the search results from \pyinline{right}.
\item Sometimes it is easier to search \pyinline{left} and choose \pyinline{right} as terminal state.
\end{itemize}
\subsection{Palindrome}
\subsubsection{Palindrome partition.} Given \pyinline{s = "aab"}, return: \\
\pyinline{[["aa","b"], ["a","a","b"]]}
\\
\runinhead{Core clues:}
\begin{enumerate}
\item Expand the search tree \textbf{horizontally}.
\end{enumerate}
\rih{Search process:}
\begin{python}
input: "aabbc"
"a", "abbc"
"a", "bbc"
"b", "bc"
"b", "c" (o)
"bc" (x)
"bb", "c" (o)
"bbc" (x)
"ab", "bc" (x)
"abb", "c" (x)
"abbc" (x)
"aa", "bbc"
"b", "bc"
"b", "c" (o)
"bc" (x)
"bb", "c" (o)
"bbc" (x)
"aab", "bc" (x)
"aabb", "c" (x)
\end{python}
Code:
\begin{python}
def partition(self, s):
ret = []
self.backtrack(s, [], ret)
return ret
def backtrack(self, s, cur_lvl, ret):
"""
Let i be the scanning ptr.
If s[:i] passes predicate, then backtrack s[i:]
"""
if not s:
ret.append(list(cur_lvl)) # clone
for i in range(1, len(s)+1):
if self.predicate(s[:i]):
cur_lvl.append(s[:i])
self.backtrack(s[i:], cur_lvl, ret)
cur_lvl.pop()
def predicate(self, s):
return s == s[::-1]
\end{python}
\subsection{Word Abbreviation}
\runinhead{Core clues:}
\begin{enumerate}
\item Pivot a letter
\item Left side as a number, right side dfs
\end{enumerate}
\begin{python}
def dfs(self, word):
if not word:
yield ""
for l in range(len(word)+1):
left_num = str(l) if l else ""
for right in self.dfs(word[l+1:]):
yield left_num + word[l:l+1] + right
# note word[l:l+1] and right default ''
\end{python}
\subsection{Split Array - Minimize Maximum Subarray Sum}
Split the array into $m$ parts and minimize the max subarray sum.
\runinhead{Core clues:}
\begin{enumerate}
\item Take one subarray from left, and search the right side for the minimum max subarray.
\item To make process in the DFS, always make the left part a subarray, and DFS the right part.
\item Pivot an index to break the array into the left and right parts.
\end{enumerate}
Search right.
\begin{python}
def dfs(self, cur, m):
"""
* p break the nums[cur:] into left and right part
* sums is the prefix sum (sums[i] == sum(nums[:i]))
"""
if m == 1:
return self.sums[len(nums)] - self.sums[cur]
mini = float("inf")
for j in range(cur, lens(nums)):
left = self.sums[j + 1] - self.sums[0]
right = self.dfs(j + 1, m - 1)
# minimize the max
mini = min(mini, max(left, right))
return mini
\end{python}
Alternatively, search left.
\begin{python}
def dfs(self, hi, m):
"""
j break the nums[:hi] into left and right part
sums is the prefix sum (sums[i] == sum(nums[:i]))
"""
if m == 1:
return self.sums[hi] - self.sums[0]
mini = float("inf")
for j in range(hi):
right = self.sums[hi] - self.sums[j]
left = self.dfs(j, m - 1)
# minimize the max
mini = min(mini, max(left, right))
return mini
\end{python}
\section{Cartesian Product}
Each state can generate multiple combinations. Search through all the combinations.
\subsection{Pyramid Transition Matrix.}
\begin{python}
"""
(H, I ..)
/ \
(D,E) (F, G)
/ \ / \
A B C
"""
def dfs(
self,
T: Dict[Tuple[str, str], Set[str]],
level: str,
) -> bool:
"""
T - Transition matrix
stores all the possible end states from state1
and state2
[s1, s2] -> set of end states
"""
if len(level) == 1:
return True
for nxt_level in itertools.product(
*[T[a, b] for a, b in zip(level, level[1:])]
):
if self.dfs(T, nxt_level):
return True
return False
\end{python}
\section{Math}
\subsection{Decomposition}
\subsubsection{Factorize a number}\label{factorization}
\runinhead{Core clues:}
\begin{enumerate}
\item Expand the search tree \textbf{horizontally}.
\item Take the last number on the stack, and factorize it recursively.
\end{enumerate}
\rih{Search tree:}
\begin{python}
Input: 16
get factors of cur[-1]
[16]
[2, 8]
[2, 2, 4]
[2, 2, 2, 2]
[4, 4]
\end{python}
Take the last number from the list and factorize it.
Code:
\begin{python}
ret = [] # collector
def dfs(cur, remain, ret):
if remain == 1:
res.append(list(cur))
return
start = 2 if not cur else cur[-1]
# if start = 2, it generates duplicate combinations
for factor in range(start, remain + 1):
if remain % factor == 0:
dfs(cur + [factor], remain // factor)
dfs([], target, ret)
\end{python}
Using a single stack to conserve space, we need to maintain the stack \pyinline{cur}.
\begin{python}
self.dfs([16], [])
def dfs(self, cur, ret):
if len(cur) > 1:
ret.append(list(cur)) # clone
n = cur.pop()
start = cur[-1] if cur else 2
for i in range(start, int(sqrt(n))+1):
if self.predicate(n, i):
cur.append(i)
cur.append(n // i)
self.dfs(cur, ret)
cur.pop() # pop the i here. pop n // i in dfs
def predicate(self, n, i):
return n % i == 0
\end{python}
\runinhead{Time complexity.} The search tree's size is $O(2^n)$ where $n$ is the number
of prime factors. Choose $i$ prime factors to combine then, and keep the rest uncombined.
$$\sum_i {n \choose i} = 2^n$$
\section{Arithmetic Expression}
\subsection{Unidirection}
\rih{Insert operators.} Given a string that contains only digits 0-9 and a target value,
return all possibilities to add binary operators (not unary) +, -, or * between the
digits so they evaluate to the target value.
Example:
\begin{align*}
``123", 6 \rightarrow [``1+2+3", ``1*2*3"] \\
``232", 8 \rightarrow [``2*3+2", ``2+3*2"] \\
\end{align*}
Clues:
\begin{enumerate}
\item Backtracking with \textit{horizontal} expanding
\item Special handling for multiplication - caching the expression \textit{predecessor}
for multiplication association.
\item Detect \textit{invalid} number with leading 0's
\end{enumerate}
\begin{python}
def addOperators(self, num, target):
ret = []
self.dfs(num, target, 0, "", 0, 0, ret)
return ret
def dfs(
self,
num,
target,
pos, # scanning index
cur_str, # The current str builder
cur_val, # To reach the target
mul, # first operand for multiplication
ret,
):
if pos >= len(num):
if cur_val == target:
ret.append(cur_str)
else:
for i in range(pos, len(num)):
if i != pos and num[pos] == '0':
continue
nxt_val = int(num[pos:i+1])
if not cur_str: # 1st number
self.dfs(num, target, i+1,
f"nxt_val", nxt_val,
nxt_val, ret)
else: # +, -, *
self.dfs(num, target, i+1,
f"{cur_str}+{nxt_val}", cur_val+nxt_val,
nxt_val, ret)
self.dfs(num, target, i+1,
f"{cur_str}-{nxt_val}", cur_val-nxt_val,
-nxt_val, ret)
self.dfs(num, target, i+1,
f"{cur_str}*{nxt_val}", cur_val-mul+mul*nxt_val,
mul*nxt_val, ret)
\end{python}
\subsection{Bidirection}
\rih{Insert parenthesis.} Given a string of numbers and operators, return all possible
results from computing all the different possible ways to group numbers and operators.
The valid operators are +, - and *.
Examples:
\begin{align*}
(2*(3-(4*5))) &= -34 \\
((2*3)-(4*5)) &= -14 \\
((2*(3-4))*5) &= -10 \\
(2*((3-4)*5)) &= -10 \\
(((2*3)-4)*5) &= 10
\end{align*}
Clues: Iterate the operators, divide and conquer - left parts and right parts and then
combine result. \\
Code:
\begin{python}
def dfs_eval(self, nums, ops):
ret = []
if not ops:
assert len(nums) == 1
return nums
for i, op in enumerate(ops):
left_vals = self.dfs_eval(nums[:i+1], ops[:i])
right_vals = self.dfs_eval(nums[i+1:], ops[i+1:])
for l in left_vals:
for r in right_vals:
ret.append(self._eval(l, r, op))
return ret
\end{python}
\section{Parenthesis}
\runinhead{Remove Invalid Parentheses.} Remove the minimum number of invalid parentheses in order to make the input string valid. Return all possible results.
Core clues:
\begin{enumerate}
\item \textbf{Backtracking}: All possible results $\ra$ backtrack.
\item \textbf{Minrm}: Find the minimal number of removal.
\item \textbf{Jump}: To avoid duplicate, remove all brackets same as previous one $\pi$ at once.
\end{enumerate}
To find the minimal number of removal:
\begin{python}
def minrm(self, s):
"""
returns minimal number of removals
"""
rmcnt = 0
left = 0
for c in s:
if c == "(":
left += 1
elif c == ")":
if left > 0:
left -= 1
else:
rmcnt += 1
rmcnt += left
return rmcnt
\end{python}
To return all possible results, do backtracking:
\begin{python}
def dfs(self, s, cur, left, pi, i, rmcnt, ret):
"""
Remove parenthesis
backtracking, post-check
:param s: original string
:param cur: current string builder
:param left: number of remaining left parentheses in s[0..i]
:param pi: last removed char
:param i: current index
:param rmcnt: number of remaining removals needed
:param ret: results
"""
if left < 0 or rmcnt < 0 or i > len(s):
return
if i == len(s):
if rmcnt == 0 and left == 0:
ret.append(cur)
return
if s[i] not in ("(", ")"): # skip non-parenthesis
self.dfs(s, cur+s[i], left, None, i+1, rmcnt, ret)
else:
if pi == s[i]:
while i < len(s) and pi and pi == s[i]:
i += 1
rmcnt -= 1
self.dfs(s, cur, left, pi, i, rmcnt, ret)
else:
self.dfs(s, cur, left, s[i], i+1, rmcnt-1, ret)
L = left+1 if s[i] == "(" else left-1 # consume "("
self.dfs(s, cur+s[i], L, None, i+1, rmcnt, ret) # not rm
\end{python}
\section{Tree}
\subsection{BST}
\subsubsection{Generate Valid BST}
Generate all valid BST with nodes from 1 to $n$.
\runinhead{Core clues:}
\begin{enumerate}
\item Iterate pivot
\item Generate left and right
\end{enumerate}
Code:
\begin{python}
def generate(self, start, end) -> List[TreeNode]:
roots = []
if start > end:
roots.append(None)
return roots
for pivot in range(start, end+1):
left_roots = self.generate_cache(start, pivot-1)
right_roots = self.generate_cache(pivot+1, end)
for left_root in left_roots:
for right_root in right_roots:
root = TreeNode(pivot) # new instance
root.left = left_root
root.right = right_root
roots.append(root)
return roots
\end{python}