-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_storm_patch.py
executable file
·137 lines (110 loc) · 5.62 KB
/
plot_storm_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
import numpy as np
from netCDF4 import Dataset, MFDataset
import datetime as dt
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm, ListedColormap,BoundaryNorm
from scipy.ndimage.filters import gaussian_filter
from scipy.stats import pearsonr
from mpl_toolkits.basemap import *
from scipy import spatial
import os
import pandas as pd
def readcm(name):
'''Read colormap from file formatted as 0-1 RGB CSV'''
rgb = []
fh = open(name, 'r')
for line in fh.read().splitlines(): rgb.append(map(float,line.split()))
return rgb
def readNCLcm(name):
'''Read in NCL colormap for use in matplotlib'''
rgb, appending = [], False
fh = open('/glade/u/apps/ch/opt/ncl/6.4.0/intel/16.0.3/lib/ncarg/colormaps/%s.rgb'%name, 'r')
for line in fh.read().splitlines():
if appending: rgb.append(map(float,line.split()))
if ''.join(line.split()) in ['#rgb',';RGB']: appending = True
maxrgb = max([ x for y in rgb for x in y ])
if maxrgb > 1: rgb = [ [ x/255.0 for x in a ] for a in rgb ]
return rgb
def computeshr01(row):
return np.sqrt(row['USHR1-potential_mean']**2 + row['VSHR1-potential_mean']**2)
def computeshr06(row):
return np.sqrt(row['USHR6-potential_mean']**2 + row['VSHR6-potential_mean']**2)
def computeSTP(row):
lclterm = ((2000.0-row['MLLCL-potential_mean'])/1000.0)
lclterm = np.where(row['MLLCL-potential_mean']<1000, 1.0, lclterm)
lclterm = np.where(row['MLLCL-potential_mean']>2000, 0.0, lclterm)
shrterm = (row['shr06']/20.0)
shrterm = np.where(row['shr06'] > 30, 1.5, shrterm)
shrterm = np.where(row['shr06'] < 12.5, 0.0, shrterm)
stp = (row['SBCAPE-potential_mean']/1500.0) * lclterm * (row['SRH01-potential_mean']/150.0) * shrterm
return stp
def read_csv_files(r):
# read in all CSV files for 1km forecasts
tdate = sdate
all_files = []
while tdate <= edate:
yyyymmdd = tdate.strftime('%Y%m%d')
if r == '1km': csv_file = '/glade/work/sobash/NSC_objects/track_data_ncarstorm_1km_csv/track_step_NCARSTORM_d01_%s-0000_13.csv'%(yyyymmdd)
#elif r == '3km': csv_file = '/glade/work/sobash/NSC_objects/track_data_ncarstorm_3km_csv/track_step_NCARSTORM_d01_%s-0000_13.csv'%(yyyymmdd)
elif r == '3km': csv_file = '/glade/work/sobash/NSC_objects/track_data_ncarstorm_3km_csv/track_step_NCARSTORM_d01_%s-0000_13.csv'%(yyyymmdd)
if os.path.exists(csv_file): all_files.append(csv_file)
tdate += dateinc
print 'Reading %s files'%(len(all_files))
df = pd.concat((pd.read_csv(f) for f in all_files))
# compute various diagnostic quantities
#df['shr01'] = df.apply(computeshr01, axis=1)
#df['shr06'] = df.apply(computeshr06, axis=1)
#df['stp'] = df.apply(computeSTP, axis=1)
#df['ratio'] = df['RVORT1_MAX_max'] / df['RVORT5_MAX_max']
return df, len(all_files)
m = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
sdate = dt.datetime(2011,4,1,0,0,0)
edate = dt.datetime(2011,5,1,0,0,0)
dateinc = dt.timedelta(days=1)
### PLOT 2D HISTOGRAM OF STORM NUMBERS
levels = np.arange(5,71,5)
#levels = np.arange(10,43,2)
cmap = ListedColormap(readcm('/glade/u/home/sobash/RT2015_gpx/cmap_rad.rgb')[1:14])
#cmap = ListedColormap(readNCLcm('prcp_1')[:16])
norm = BoundaryNorm(levels, cmap.N)
df, numfcsts = read_csv_files('3km')
# filter objects
df = df[df['UP_HELI_MAX01_max'] > 14.362]
#df = df[df['UP_HELI_MAX01_max'] > 100.03]
df = df.reset_index()
#fh = Dataset('/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/2011061700/diags_d01_2011-06-18_02_00_00.nc')
fh = Dataset('/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST/2011061700/diags_d01_2011-06-18_02_00_00.nc')
lats = fh.variables['XLAT'][0,:]
lons = fh.variables['XLONG'][0,:]
fh.close()
x_storm, y_storm = m(df['Centroid_Lon'].values, df['Centroid_Lat'].values)
x_grid, y_grid = m(lons, lats)
tree = spatial.KDTree(zip(x_grid.ravel(),y_grid.ravel()))
distances, closest = tree.query(zip(x_storm.ravel(),y_storm.ravel()))
nearest_y, nearest_x = np.unravel_index(closest, x_grid.shape)
print df.count()
for i in range(len(df)):
thisdate = dt.datetime.strptime(df.iloc[i]['Run_Date'], '%Y-%m-%d %H:%M:%S')
fhr = df.iloc[i]['Forecast_Hour']
yyyymmddhh = thisdate.strftime('%Y%m%d%H')
if yyyymmddhh != "2011042700": continue
wrfvalidstr = (thisdate + dt.timedelta(hours=fhr)).strftime('%Y-%m-%d_%H_%M_%S')
wrffile = "/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/%s/diags_d01_%s.nc"%(yyyymmddhh, wrfvalidstr)
x_min, x_max = nearest_x[i]-48, nearest_x[i]+48
y_min, y_max = nearest_y[i]-48, nearest_y[i]+48
if x_min < 0 or x_max > lats.shape[1]: continue
if y_min < 0 or y_max > lats.shape[0]: continue
fh = Dataset(wrffile)
cref = fh.variables['REFL_COM'][0,y_min:y_max+1, x_min:x_max+1]
uh01 = fh.variables['UP_HELI_MAX01'][0,y_min:y_max+1, x_min:x_max+1]
#wind = fh.variables['WSPD10MAX'][0,y_min:y_max+1, x_min:x_max+1]
fh.close()
print i, yyyymmddhh, fhr, nearest_x[i], nearest_y[i], cref.max()
plt.clf()
#cs1 = plt.contourf(x_grid[y_min:y_max+1,x_min:x_max+1], y_grid[y_min:y_max+1,x_min:x_max+1], wind, levels=levels, cmap=cmap, norm=norm, extend='max')
cs1 = plt.contourf(x_grid[y_min:y_max+1,x_min:x_max+1], y_grid[y_min:y_max+1,x_min:x_max+1], cref, levels=levels, cmap=cmap, norm=norm, extend='max')
cs1 = plt.contourf(x_grid[y_min:y_max+1,x_min:x_max+1], y_grid[y_min:y_max+1,x_min:x_max+1], uh01, levels=[10,100], alpha=0.5, colors='black', extend='max')
plt.savefig('object_cref_%d.png'%i)