-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_osr_climo.py
executable file
·142 lines (114 loc) · 6.84 KB
/
make_osr_climo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
import numpy as np
from datetime import *
import time as t
import os, sys
from get_osr_gridded_by_day_hr import *
import pickle
import scipy.ndimage.filters
import xarray as xr
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import *
from matplotlib.colors import BoundaryNorm
def readSevereClimo(fname, day_of_year, hr):
from scipy.interpolate import RectBivariateSpline
data = np.load(fname)
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
grid81 = awips.makegrid(93, 65, returnxy=True)
x, y = awips(data['lons'], data['lats'])
spline = RectBivariateSpline(x[0,:], y[:,0], data['severe'][day_of_year-1,hr,:].T, kx=3, ky=3)
interp_data = spline.ev(grid81[2].ravel(), grid81[3].ravel())
return np.reshape(interp_data, (65,93))
def computeClimo():
gmt2cst = timedelta(hours=6)
m = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
grid81 = m.makegrid(93, 65, returnxy=True)
mask = pickle.load(open('/glade/u/home/sobash/2013RT/usamask.pk', 'rb'))
mask = np.logical_not(mask)
mask = mask.reshape((65,93))
osr81_sum_by_year = []
for year in range(1986,2016):
#for year in range(2001,2016):
#times in database are in CST, so if we want 00z-00z, subtract 6 hrs
obs_start, obs_end = datetime(year,1,1,0,0,0) - gmt2cst, datetime(year,12,31,23,59,0) - gmt2cst
if year < 2010:
#osr81, osr81_count = get_osr_gridded(obs_start, obs_end, 93, 65, ['wind'])
#osr81, osr81_count = get_osr_gridded_by_day(obs_start, obs_end, 93, 65, ['wind'])
#osr81, osr81_count = get_osr_gridded_by_day_hr(obs_start, obs_end, 93, 65, ['wind','hailone','torn'])
osr81, osr81_count = get_osr_gridded_by_day_hr(obs_start, obs_end, 93, 65, ['sighail'])
else:
#osr81, osr81_count = get_osr_gridded(obs_start, obs_end, 93, 65, ['wind'])
#osr81, osr81_count = get_osr_gridded_by_day(obs_start, obs_end, 93, 65, ['wind'])
#osr81, osr81_count = get_osr_gridded_by_day_hr(obs_start, obs_end, 93, 65, ['wind','hailone','torn'])
osr81, osr81_count = get_osr_gridded_by_day_hr(obs_start, obs_end, 93, 65, ['sighail'])
osr81[:,:,mask] = 0.0
osr81_count[:,:,mask] = 0.0
osr81_sum_by_year.append(osr81)
print(year, osr81.sum(), osr81_count.sum())
osr81_sum_by_year = np.array(osr81_sum_by_year)
data = []
for sig in [40, 120]:
#determine if report occurred within 2-hr and X-km of central grid pt
if sig == 40: osr81_sum_by_year = scipy.ndimage.filters.maximum_filter(osr81_sum_by_year, footprint=np.ones((1,1,5,1,1)), mode='wrap')
if sig == 120: osr81_sum_by_year = scipy.ndimage.filters.maximum_filter(osr81_sum_by_year, footprint=np.ones((1,1,5,3,3)), mode='wrap')
frequency = osr81_sum_by_year.mean(axis=0)
frequency = scipy.ndimage.filters.gaussian_filter(frequency, sigma=[15,1.5,1.5,1.5], mode='wrap')
print(frequency.shape)
#for i in range(0,101,10): print(i, np.percentile(frequency, i))
data.append( frequency )
ds = xr.Dataset(data_vars={
'climo': ( ['window', 'day', 'hr', 'y', 'x'], np.array(data).astype('float32') ),
},
coords={'window': [40, 120],
'day': range(1,367),
'hr': range(0,24),
'lon': (('y', 'x'), grid81[0].astype('float32')),
'lat': (('y', 'x'), grid81[1].astype('float32')),
},
attrs={ 'output time':datetime.utcnow().strftime('%Y-%m-%d %H:%m:%s UTC') },
)
ds.to_netcdf('climo_severe_2hr_sighail.nc')
#np.savez('climo_severe_120km_2hr_torn.npz', lats=grid81[1], lons=grid81[0], severe=frequency.astype('float32'))
#np.savez('climo_severe_40km_2hr_torn.npz', lats=grid81[1], lons=grid81[0], severe=frequency.astype('float32'))
def plot_climo():
import cartopy.crs as ccrs
import cartopy.feature as cfeature
# setup color table
levels = np.arange(0,0.05,0.005)
#levels = np.arange(0,0.1,0.01)
cmap = plt.get_cmap('Reds')
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
fig = plt.figure(figsize=(9,9))
# old basemap plotting code
m = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
grid81 = m.makegrid(93, 65, returnxy=True)
xorig, yorig = m(grid81[0], grid81[1])
x = (xorig[1:,1:] + xorig[:-1,:-1])/2.0
y = (yorig[1:,1:] + yorig[:-1,:-1])/2.0
m.drawcoastlines()
m.drawstates()
m.drawcountries()
#a = m.pcolormesh(x, y, readSevereClimo('../severe.npz', 121)[1:,1:], cmap=cmap, norm=norm)
#a = plt.pcolormesh(grid81[0], grid81[1],readSevereClimo('climo_torn_15yr.npz', 121)[1:,1:], cmap=cmap, norm=norm, transform=ccrs.LambertConformal())
# cartopy code
#m = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
#grid81 = m.makegrid(93, 65, returnxy=True)
#ax = plt.axes(projection=ccrs.LambertConformal(central_latitude=38.33643, central_longitude=-97.53348, standard_parallels=(32,46)))
#ax.set_extent([-122, -70, 24, 50], ccrs.PlateCarree())
#states = cfeature.NaturalEarthFeature(category='cultural', scale='50m', facecolor='none', name='admin_1_states_provinces_lakes_shp')
#ax.add_feature(states, linewidth=0.25, color='gray')
#ax.coastlines('50m', linewidth=0.25, color='gray')
#a = plt.pcolormesh(lons, lats, np.ma.masked_less(climo_to_plot[1:,1:], 0.0025), cmap=cmap, norm=norm, transform=ccrs.PlateCarree(), zorder=1000)
lons = (grid81[0][1:,1:] + grid81[0][:-1,:-1])/2.0
lats = (grid81[1][1:,1:] + grid81[1][:-1,:-1])/2.0
a = m.pcolormesh(x, y, np.ma.masked_less(climo_to_plot[1:,1:], 0.0025), cmap=cmap, norm=norm)
cbar = plt.colorbar(a, shrink=0.95, pad=0, orientation='horizontal')
plt.savefig('test%02d.png'%f, dpi=200, bbox_inches='tight')
computeClimo()
#data = np.load('climo_severe_40km_2hr.npz')
#climo = data['severe']
#for f in range(0,24):
# climo_to_plot = climo[:,f,:].mean(axis=0)
# #climo_to_plot = readSevereClimo('climo_severe_120km_2hr.npz', 181, f)
# print(climo_to_plot.max(), climo_to_plot.min(), climo_to_plot.shape)
# plot_climo()