-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhair_editor.py
335 lines (281 loc) · 14.4 KB
/
hair_editor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# -*- coding: utf-8 -*-
"""
# File name: hair_editor.py
# Time : 2021/11/18 17:21
# Author: [email protected]
# Description:
"""
import os
import pickle
from glob import glob
import cv2
import numpy as np
import torch
import my_torchlib
from color_texture_branch.solver import Solver as SolveFeature
from external_code.face_parsing.my_parsing_util import FaceParsing
from global_value_utils import HAIR_IDX, PARSING_LABEL_LIST
from poisson_blending import poisson_blending
from sean_codes.models.pix2pix_model import Pix2PixModel
from sean_codes.options.test_options import TestOptions
from shape_branch.solver import Solver as SolverMask
from util.imutil import write_rgb
# adaptor_root_dir = '/data1/guoxuyang/myWorkSpace/hair_editing'
# sys.path.append(adaptor_root_dir)
# sys.path.append(os.path.join(adaptor_root_dir, 'external_code/face_3DDFA'))
def change_status(model, new_status):
for m in model.modules():
if hasattr(m, 'status'):
m.status = new_status
class HairEditor:
"""
This is the basic module, that could achieve many editing task. ui/backend.py/Backend succeed this class.
"""
def __init__(self, load_feature_model=True, load_mask_model=True):
self.opt = TestOptions().parse()
self.opt.status = 'test'
self.sean_model = Pix2PixModel(self.opt)
self.sean_model.eval()
self.img_size = 256
self.device = torch.device('cuda', 0)
if load_feature_model:
from color_texture_branch.config import cfg as cfg_feature
self.solver_feature = SolveFeature(cfg_feature, device=self.device, local_rank=-1, training=False)
self.feature_encoder = self.solver_feature.dis
self.feature_generator = self.solver_feature.gen
self.feature_rgb_predictor = self.solver_feature.rgb_model
# self.feature_curliness_predictor = self.solver_feature.curliness_model
# ckpt_dir = 'external_model_params/disentangle_checkpoints/' + cfg_app.experiment_name + '/checkpoints'
ckpt_dir = 'model_trained/color_texture/' + cfg_feature.experiment_name + '/checkpoints'
ckpt = my_torchlib.load_checkpoint(ckpt_dir)
for model_name in ['Model_G', 'Model_D']:
cur_model = ckpt[model_name]
if list(cur_model)[0].startswith('module'):
ckpt[model_name] = {kk[7:]: cur_model[kk] for kk in cur_model}
self.feature_generator.load_state_dict(ckpt['Model_G'], strict=True)
self.feature_encoder.load_state_dict(ckpt['Model_D'], strict=True)
# if 'curliness' in cfg_feature.predictor:
# ckpt = my_torchlib.load_checkpoint(cfg_feature.predictor.curliness.root_dir + '/checkpoints')
# self.feature_curliness_predictor.load_state_dict(ckpt['Predictor'], strict=True)
if 'rgb' in cfg_feature.predictor:
ckpt = my_torchlib.load_checkpoint(cfg_feature.predictor.rgb.root_dir + '/checkpoints')
self.feature_rgb_predictor.load_state_dict(ckpt['Predictor'], strict=True)
# load unsupervised direction
existing_dirs_dir = os.path.join('model_trained/color_texture', cfg_feature.experiment_name,
'texture_dir_used')
if os.path.exists(existing_dirs_dir):
existing_dirs_list = os.listdir(existing_dirs_dir)
existing_dirs_list.sort()
existing_dirs = []
for dd in existing_dirs_list:
with open(os.path.join(existing_dirs_dir, dd), 'rb') as f:
existing_dirs.append(pickle.load(f).to(self.device))
self.texture_dirs = existing_dirs
if load_mask_model:
from shape_branch.config import cfg as cfg_mask
self.solver_mask = SolverMask(cfg_mask, device=self.device, local_rank=-1, training=False)
self.mask_generator = self.solver_mask.gen
##############################################
# change to your checkpoints dir #
##############################################
ckpt_dir = 'model_trained/shape/' + cfg_mask.experiment_name + '/checkpoints'
ckpt = my_torchlib.load_checkpoint(ckpt_dir)
for model_name in ['Model_G', 'Model_D']:
cur_model = ckpt[model_name]
if list(cur_model)[0].startswith('module'):
ckpt[model_name] = {kk[7:]: cur_model[kk] for kk in cur_model}
self.mask_generator.load_state_dict(ckpt['Model_G'], strict=True)
# load unsupervised direction
existing_dirs_dir = os.path.join('model_trained/shape', cfg_mask.experiment_name, 'shape_dir_used')
if os.path.exists(existing_dirs_dir):
existing_dirs_list = os.listdir(existing_dirs_dir)
existing_dirs_list.sort()
existing_dirs = []
for dd in existing_dirs_list:
with open(os.path.join(existing_dirs_dir, dd), 'rb') as f:
existing_dirs.append(pickle.load(f).to(self.device))
self.shape_dirs = existing_dirs
def preprocess_img(self, img):
img = cv2.resize(img.astype('uint8'), (self.img_size, self.img_size))
return (np.transpose(img, [2, 0, 1]) / 127.5 - 1.0)[None, ...]
def preprocess_mask(self, mask_img):
mask_img = cv2.resize(mask_img.astype('uint8'), (self.img_size, self.img_size),
interpolation=cv2.INTER_NEAREST)
return mask_img[None, None, :, :]
@staticmethod
def load_average_feature():
############### load average features
# average_style_code_folder = 'styles_test/mean_style_code/mean/'
average_style_code_folder = 'sean_codes/styles_test/mean_style_code/median/'
input_style_dic = {}
############### hard coding for categories
for i in range(19):
input_style_dic[str(i)] = {}
average_category_folder_list = glob(os.path.join(average_style_code_folder, str(i), '*.npy'))
average_category_list = [os.path.splitext(os.path.basename(name))[0] for name in
average_category_folder_list]
for style_code_path in average_category_list:
input_style_dic[str(i)][style_code_path] = torch.from_numpy(
np.load(os.path.join(average_style_code_folder, str(i), style_code_path + '.npy'))).cuda()
return input_style_dic
def get_code(self, hair_img, hair_parsing):
# generate style code
data = {'label': torch.tensor(hair_parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(hair_img, dtype=torch.float32),
'path': ['temp/temp_npy']}
change_status(self.sean_model, 'test')
hair_img_code = self.sean_model(data, mode='style_code')
return hair_img_code
def gen_img(self, code, parsing):
# load style code
if not isinstance(code, torch.Tensor):
code = torch.tensor(code)
obj_dic = self.load_average_feature()
for idx in range(19):
cur_code = code[0, idx]
if not torch.all(cur_code == 0):
obj_dic[str(idx)]['ACE'] = cur_code
temp_face_image = torch.zeros((0, 3, self.img_size, self.img_size)) # place holder
data = {'label': torch.tensor(parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(temp_face_image, dtype=torch.float32),
'obj_dic': obj_dic}
change_status(self.sean_model, 'UI_mode')
# self.model = self.model.to(code.device)
generated = self.sean_model(data, mode='UI_mode')[0]
return generated
def generate_by_sean(self, face_img_code, hair_code, target_seg):
"""
:param face_img_code: please input with the shape [19, 512]
:param hair_code: please input with the shape [512]
:param target_seg:
:return:
"""
# load style code
obj_dic = self.load_average_feature()
for idx in range(19):
if idx == HAIR_IDX:
cur_code = hair_code
# cur_code = face_img_code[0, idx]
else:
cur_code = face_img_code[idx]
if not torch.all(face_img_code == 0):
obj_dic[str(idx)]['ACE'] = cur_code
data = {'label': torch.tensor(target_seg, dtype=torch.float32),
'instance': torch.tensor(0),
'obj_dic': obj_dic,
'image': None}
change_status(self.sean_model, 'UI_mode')
generated = self.sean_model(data, mode='UI_mode')[0]
return generated
def generate_instance_transfer_img(self, face_img, face_parsing, hair_img, hair_parsing, target_seg, edit_data=None,
temp_path='temp'):
# generate style code
data = {'label': torch.tensor(face_parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(face_img, dtype=torch.float32),
'path': ['temp/temp_npy']}
face_img_code = self.sean_model(data, mode='style_code')
if hair_img is None:
hair_img_code = face_img_code
else:
data = {'label': torch.tensor(hair_parsing, dtype=torch.float32),
'instance': torch.tensor(0),
'image': torch.tensor(hair_img, dtype=torch.float32),
'path': ['temp/temp_npy']}
change_status(self.sean_model, 'test')
hair_img_code = self.sean_model(data, mode='style_code')
hair_code = hair_img_code[0, HAIR_IDX]
if edit_data is not None:
hair_code = self.solver_feature.edit_infer(hair_code[None, ...], edit_data)[0]
return self.generate_by_sean(face_img_code[0], hair_code, target_seg)
def get_hair_color(self, img):
parsing, _ = FaceParsing.parsing_img(img)
parsing = FaceParsing.swap_parsing_label_to_celeba_mask(parsing)
parsing = cv2.resize(parsing.astype('uint8'), (1024, 1024), interpolation=cv2.INTER_NEAREST)
img = cv2.resize(img.astype('uint8'), (1024, 1024))
hair_mask = (parsing == HAIR_IDX).astype('uint8')
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(19, 19))
hair_mask = cv2.erode(hair_mask, kernel, iterations=1)
points = img[hair_mask.astype('bool')]
moment1 = points.mean(axis=0)
return moment1
@staticmethod
def draw_landmarks(img, lms):
lms = lms / 2
lms = lms.astype('int')
for idx, point in enumerate(lms):
font = cv2.FONT_HERSHEY_SIMPLEX
pos = (point[0], point[1])
cv2.circle(img, pos, 2, color=(139, 0, 0))
cv2.putText(img, str(idx + 1), pos, font, 0.18, (255, 0, 0), 1, cv2.LINE_AA)
return img
def postprocess_blending(self, face_img, res_img, face_parsing, target_parsing, verbose_print=False, blending=True):
"""
Blend original face img and result image with poisson blending.
If not blend, the result image will look slightly different from original image in some details in
non-hair region, but the image quality will be better.
:param face_img:
:param res_img:
:param face_parsing:
:param target_parsing:
:param verbose_print:
:param blending: If `False`, the result image will do some trivial thing like transferring data type
:return:
"""
if verbose_print:
print("Post process for the result image...")
def from_tensor_order_to_cv2(tensor_img, is_mask=False):
if isinstance(tensor_img, torch.Tensor):
tensor_img = tensor_img.detach().cpu().numpy()
if len(tensor_img.shape) == 4:
tensor_img = tensor_img[0]
if len(tensor_img.shape) == 2:
tensor_img = tensor_img[None, ...]
if tensor_img.shape[2] <= 3:
return tensor_img
res = np.transpose(tensor_img, [1, 2, 0])
if not is_mask:
res = res * 127.5 + 127.5
return res
res_img = from_tensor_order_to_cv2(res_img)
res_img = res_img.astype('uint8')
if blending:
target_parsing = from_tensor_order_to_cv2(target_parsing, is_mask=True)
face_img = from_tensor_order_to_cv2(face_img)
face_img = face_img.astype('uint8')
face_parsing = from_tensor_order_to_cv2(face_parsing, is_mask=True)
res_mask = np.logical_or(target_parsing == HAIR_IDX, face_parsing == HAIR_IDX).astype('uint8')
kernel13 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(13, 13))
kernel5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(5, 5))
res_mask_dilated = cv2.dilate(res_mask, kernel13, iterations=1)[..., None]
res_mask_dilated5 = cv2.dilate(res_mask, kernel5, iterations=1)[..., None]
bg_mask = (target_parsing == PARSING_LABEL_LIST.index('background'))
res_mask_dilated = res_mask_dilated * (1 - bg_mask) + res_mask_dilated5 * bg_mask
face_to_hair = poisson_blending(face_img, res_img, 1 - res_mask_dilated, with_gamma=True)
return face_to_hair, res_mask_dilated
else:
return res_img, None
def crop_face(self, img_rgb, save_path=None):
"""
crop the face part in the image to adapt the editing system
:param img_rgb:
:param save_path:
:return:
"""
from external_code.crop import recreate_aligned_images
from external_code.landmarks_util import predictor_dict, detector
predictor_68 = predictor_dict[68]
bbox = detector(img_rgb, 0)[0]
lm_68 = np.array([[p.x, p.y] for p in predictor_68(img_rgb, bbox).parts()])
crop_img_pil, lm_68 = recreate_aligned_images(img_rgb, lm_68, output_size=self.img_size)
img_rgb = np.array(crop_img_pil)
if save_path is not None:
write_rgb(save_path, img_rgb)
return img_rgb
def get_mask(self, img_rgb):
parsing, _ = FaceParsing.parsing_img(img_rgb)
parsing = FaceParsing.swap_parsing_label_to_celeba_mask(parsing)
mask_img = cv2.resize(parsing.astype('uint8'), (self.img_size, self.img_size), interpolation=cv2.INTER_NEAREST)
return mask_img